Catalytic oxidation of formaldehyde (HCHO) is the most efficient way to purify indoor air of HCHO pollutant. This work investigated rare earth La‐doped Pt/TiO2 for low concentration HCHO oxidation at room temperature...Catalytic oxidation of formaldehyde (HCHO) is the most efficient way to purify indoor air of HCHO pollutant. This work investigated rare earth La‐doped Pt/TiO2 for low concentration HCHO oxidation at room temperature. La‐doped Pt/TiO2 had a dramatically promoted catalytic performance for HCHO oxidation. The reasons for the La promotion effect were investigated by N2 adsorption, X‐raydiffraction, CO chemisorption, X‐ray photoelectron spectroscopy, transmission electron microscopy(TEM) and high‐angle annular dark field scanning TEM. The Pt nanoparticle size was reduced to 1.7nm from 2.2 nm after modification by La, which led to higher Pt dispersion, more exposed activesites and enhanced metal‐support interaction. Thus a superior activity for indoor low concentrationHCHO oxidation was obtained. Moreover, the La‐doped TiO2 can be wash‐coated on a cordieritemonolith so that very low amounts of Pt (0.01 wt%) can be used. The catalyst was evaluated in asimulated indoor HCHO elimination environment and displayed high purifying efficiency and stability.It can be potentially used as a commercial catalyst for indoor HCHO elimination.展开更多
With continuous developments in additive manufacturing technology, tantalum (Ta) metal has been manufactured into orthopaedic implants with a variety of forms, properties and uses by three-dimensional printing. Based ...With continuous developments in additive manufacturing technology, tantalum (Ta) metal has been manufactured into orthopaedic implants with a variety of forms, properties and uses by three-dimensional printing. Based on extensive research in recent years, the design, processing and performance aspects of this new orthopaedic implant material have been greatly improved. Besides the bionic porous structure and mechanical characteristics that are similar to human bone tissue, porous tantalum is considered to be a viable bone repair material due to its outstanding corrosion resistance, biocompatibility, bone integration and bone conductivity. Numerous in vitro, in vivo, and clinical studies have been carried out in order to analyse the safety and efficacy of these implants in orthopaedic applications. This study reviews the most recent advances in manufacturing, characteristics and clinical application of porous tantalum materials.展开更多
基金supported by the National Key Research and Development Program (2016YFC0205900)the National Natural Science Foundation of China (21503106, 21567016)+1 种基金the Education Department of Jiangxi Province (KJLD14005)the Natural Science Foundation of Jiangxi Province (20142BAB213013 and 20151BBE50006)~~
文摘Catalytic oxidation of formaldehyde (HCHO) is the most efficient way to purify indoor air of HCHO pollutant. This work investigated rare earth La‐doped Pt/TiO2 for low concentration HCHO oxidation at room temperature. La‐doped Pt/TiO2 had a dramatically promoted catalytic performance for HCHO oxidation. The reasons for the La promotion effect were investigated by N2 adsorption, X‐raydiffraction, CO chemisorption, X‐ray photoelectron spectroscopy, transmission electron microscopy(TEM) and high‐angle annular dark field scanning TEM. The Pt nanoparticle size was reduced to 1.7nm from 2.2 nm after modification by La, which led to higher Pt dispersion, more exposed activesites and enhanced metal‐support interaction. Thus a superior activity for indoor low concentrationHCHO oxidation was obtained. Moreover, the La‐doped TiO2 can be wash‐coated on a cordieritemonolith so that very low amounts of Pt (0.01 wt%) can be used. The catalyst was evaluated in asimulated indoor HCHO elimination environment and displayed high purifying efficiency and stability.It can be potentially used as a commercial catalyst for indoor HCHO elimination.
基金the General Program of the National Natural Science Foundation of China,No.82172398。
文摘With continuous developments in additive manufacturing technology, tantalum (Ta) metal has been manufactured into orthopaedic implants with a variety of forms, properties and uses by three-dimensional printing. Based on extensive research in recent years, the design, processing and performance aspects of this new orthopaedic implant material have been greatly improved. Besides the bionic porous structure and mechanical characteristics that are similar to human bone tissue, porous tantalum is considered to be a viable bone repair material due to its outstanding corrosion resistance, biocompatibility, bone integration and bone conductivity. Numerous in vitro, in vivo, and clinical studies have been carried out in order to analyse the safety and efficacy of these implants in orthopaedic applications. This study reviews the most recent advances in manufacturing, characteristics and clinical application of porous tantalum materials.