Bronze phase titanium dioxide(TiO_(2)(B))could be a promising high-power anode for lithium ion battery.However,TiO_(2)(B)is a metastable material,so the as-synthesized samples are inevitably accompanied by the existen...Bronze phase titanium dioxide(TiO_(2)(B))could be a promising high-power anode for lithium ion battery.However,TiO_(2)(B)is a metastable material,so the as-synthesized samples are inevitably accompanied by the existence of anatase phases.It has been found that the TiO_(2)(B)'s purity is positively correlated with its electrochemical performance.Herein,we have established an accurate quantification of the TiO_(2)(B)/anatase ratio,by figuring out the function between the purity of TiO_(2)(B)phase in the high purity range and its Raman spectra features in combination of the calibration by the synchrotron radiation X-ray diffraction(XRD).Compared with the time-consuming electrochemical method,the rapid,sensitive and non-destructive features of Raman spectroscopy have made it a promising candidate for determining the purity of TiO_(2)(B).Further,the correlations developed in this work should be instructive in synthesizing pure TiO_(2)(B)and furthermore optimizing its electrochemical charge storage properties.展开更多
Ultrathin zeolite membranes are of paramount importance in accelerating gas transport during membrane separation,and lowering down their membrane thicknesses to submicron scale is deemed to be very challenging.Herein,...Ultrathin zeolite membranes are of paramount importance in accelerating gas transport during membrane separation,and lowering down their membrane thicknesses to submicron scale is deemed to be very challenging.Herein,we develop an advanced approach of surface gel conversion for synthesis of submicron-thick pure silica MFI(silicalite-1)zeolite membranes.Viscous gel is prepared by finely adjusting the precursor composition,enabling its reduced wettability.The unfavorable wetting of the support surface can effectively prevent gel penetration into alumina support voids.Aided by the seeds,the surface gel is directly and fully crystallized into an MFI zeolite membrane with minimal water steam.A membrane with a thickness of 500 nm is successfully acquired and it is free of visible cracks.Additionally,the as-synthesized membranes exhibit rapid and selective separation of hexane isomers by virtue of unprecedentedly high n-hexane permeance of 24.5×10^−7 mol m^−2 s^−1 Pa^−1 and impressive separation factors of 13.3-22.6 for n-hexane over its isomers.This developed approach is of practical interest for sustainable synthesis of high-quality zeolite membranes.展开更多
Manipulation of valley pseudospins is crucial for future valleytronics. lhe emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom...Manipulation of valley pseudospins is crucial for future valleytronics. lhe emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom, including real spin, valley pseudospin, and layer pseudospin. For example, spin-valley coupling results in valley-dependent circular dichroism in which electrons with particular spin (up or down) can be selectively excited by chiral optical pumping in monolayer TMDs, whereas in few-layer TMDs, the interlayer hopping further affects the spin-valley coupling. In addition to valley and layer pseudospins, here we propose a new degree of freedom--stacking pseudospin--and demonstrate new phenomena correlated to this new stacking freedom that otherwise require the application of external electrical or magnetic field. We investigated all possible stacking configurations of chemical-vapor-deposition-grown trilayer MoS2 (AAA, ABB, AAB, ABA, and 3R). Although the AAA, ABA, 3R stackings possess a sole peak with lower degree of valley polarization than that in monolayer samples, the AAB (ABB) stackings exhibit two distinct peaks, one similar to that observed in monolayer MoS2 and findings provide a more future valleytronics. an additional unpolarized complete understanding of peak at lower energy. Our valley quantum control for展开更多
To further improve the quantum efficiency of atomically thin transition metal dichalcogenides (TMDs) is crucial for the realization of high-performance optoelectronic applications. To this regard, a few chemical or ph...To further improve the quantum efficiency of atomically thin transition metal dichalcogenides (TMDs) is crucial for the realization of high-performance optoelectronic applications. To this regard, a few chemical or physical approaches such as superacid treatment, electrical gating, dielectric screening, and laser irradiation have been developed. In particular, the laser irradiation appears to be a more efficient way with good processability and spatial selectivity. However, the underlying mechanism especially about whether chemisorption or physisorption plays a more important role is still debatable. Here, we unravel the mystery of laser irradiation induced photoluminescence enhancement in monolayer WS_(2) by precisely controlling irradiation time and environment. It is found that the synergetic effect of physisorption and chemisorption is responsible for the photoluminescence enhancement, where the physisorption dominates with more than 74% contribution. The comprehensive understanding of the adsorption mechanism in laser-irradiated TMDs may trigger the potential applications for patterned light source, effective photosensor and ultrathin optical memory.展开更多
Most van der Waals two-dimensional(2D)materials without surface dangling bonds show limited surface activities except for their edge sites.Ultrathin Bi_(2)Se_(3),a topological insulator that behaves metal-like under a...Most van der Waals two-dimensional(2D)materials without surface dangling bonds show limited surface activities except for their edge sites.Ultrathin Bi_(2)Se_(3),a topological insulator that behaves metal-like under ambient conditions,has been overlooked on its surface activities.Herein,through a topochemical conversion process,ultrathin nanoporous Bi_(2)Se_(3) layers were epitaxially deposited on BiOCl nanosheets with strong electronic coupling,leading to hybrid electronic states with further bandgap narrowing.Such oriented nanoporous Bi_(2)Se_(3) layers possessed largely exposed active edge sites,along with improved surface roughness and film forming ability even on inkjet-printed flexible electrodes.Superior room-temperature NO_(2) sensing performance was achieved compared to other 2D materials under bent conditions.Our work demonstrates that creating nanoscale features in 2D materials through topochemical heteroepitaxy is promising to achieve both favorable electronic properties and surface activity toward practical applications.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(22075074)Outstanding Young Scientists Research Funds from Hunan Province(2020JJ2004)+3 种基金Major Science and Technology Program of Hunan Province(2020WK2013)Natural Science Foundation of Hunan Province(2020JJ5035)National Natural Science Foundation of China(Grant No.11704185)the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(SKL201802SIC).
文摘Bronze phase titanium dioxide(TiO_(2)(B))could be a promising high-power anode for lithium ion battery.However,TiO_(2)(B)is a metastable material,so the as-synthesized samples are inevitably accompanied by the existence of anatase phases.It has been found that the TiO_(2)(B)'s purity is positively correlated with its electrochemical performance.Herein,we have established an accurate quantification of the TiO_(2)(B)/anatase ratio,by figuring out the function between the purity of TiO_(2)(B)phase in the high purity range and its Raman spectra features in combination of the calibration by the synchrotron radiation X-ray diffraction(XRD).Compared with the time-consuming electrochemical method,the rapid,sensitive and non-destructive features of Raman spectroscopy have made it a promising candidate for determining the purity of TiO_(2)(B).Further,the correlations developed in this work should be instructive in synthesizing pure TiO_(2)(B)and furthermore optimizing its electrochemical charge storage properties.
基金the National Natural Science Foundation of China(21531003,21501024 and 21971035)Jilin Scientific and Technological Development Program(20170101198JC and 20190103017JH)+2 种基金Jilin Education Office(JJKH20180015KJ)“111”Program(B18012)open projects from the State Key Laboratory of Inorganic Synthesis&Preparative Chemistry and State Key Laboratory of Heavy Oil Processing(2018-8,SKLOP201902003)。
文摘Ultrathin zeolite membranes are of paramount importance in accelerating gas transport during membrane separation,and lowering down their membrane thicknesses to submicron scale is deemed to be very challenging.Herein,we develop an advanced approach of surface gel conversion for synthesis of submicron-thick pure silica MFI(silicalite-1)zeolite membranes.Viscous gel is prepared by finely adjusting the precursor composition,enabling its reduced wettability.The unfavorable wetting of the support surface can effectively prevent gel penetration into alumina support voids.Aided by the seeds,the surface gel is directly and fully crystallized into an MFI zeolite membrane with minimal water steam.A membrane with a thickness of 500 nm is successfully acquired and it is free of visible cracks.Additionally,the as-synthesized membranes exhibit rapid and selective separation of hexane isomers by virtue of unprecedentedly high n-hexane permeance of 24.5×10^−7 mol m^−2 s^−1 Pa^−1 and impressive separation factors of 13.3-22.6 for n-hexane over its isomers.This developed approach is of practical interest for sustainable synthesis of high-quality zeolite membranes.
文摘Manipulation of valley pseudospins is crucial for future valleytronics. lhe emerging transition metal dichalcogenides (TMDs) provide new possibilities for exploring the interplay among the quantum degrees of freedom, including real spin, valley pseudospin, and layer pseudospin. For example, spin-valley coupling results in valley-dependent circular dichroism in which electrons with particular spin (up or down) can be selectively excited by chiral optical pumping in monolayer TMDs, whereas in few-layer TMDs, the interlayer hopping further affects the spin-valley coupling. In addition to valley and layer pseudospins, here we propose a new degree of freedom--stacking pseudospin--and demonstrate new phenomena correlated to this new stacking freedom that otherwise require the application of external electrical or magnetic field. We investigated all possible stacking configurations of chemical-vapor-deposition-grown trilayer MoS2 (AAA, ABB, AAB, ABA, and 3R). Although the AAA, ABA, 3R stackings possess a sole peak with lower degree of valley polarization than that in monolayer samples, the AAB (ABB) stackings exhibit two distinct peaks, one similar to that observed in monolayer MoS2 and findings provide a more future valleytronics. an additional unpolarized complete understanding of peak at lower energy. Our valley quantum control for
基金Y. Li and J. Yan contributed equally to this work. This work was supported by the Program of National Natural Science Foundation of China (Nos. 51732003, 51872043, 61604037, 11874104, 12074060, and 12004069)the National Science Fund for Distinguished Young Scholars (No. 52025022)+7 种基金the “111” Project (No. B13013)the National Key Research and Development Program of China (Nos. 2016YFA0201902 and 2019YFB2205100)Fund from Ministry of Education (No. 6141A02033414)Shenzhen Nanshan District Pilotage Team Program (No. LHTD20170006)the China Postdoctoral Science Foundation funded project (Nos. 2020M681025, 2021T140109, and 2021M693905)the Fundamental Research Funds for the Central Universities (Nos. 2412020QD015, 2412019BJ006, 2412021ZD007, 2412021ZD012, and 2412019FZ034)Postdoctoral Science Foundation funded project from Jilin Province (No. 111865005)the Fund from Jilin Province (Nos. YDZJ202101ZYTS049, YDZJ202101ZYTS041, YDZJ202101ZYTS133, JJKH20211273KJ, JJKH20211274KJ, and 20190103007JH).
文摘To further improve the quantum efficiency of atomically thin transition metal dichalcogenides (TMDs) is crucial for the realization of high-performance optoelectronic applications. To this regard, a few chemical or physical approaches such as superacid treatment, electrical gating, dielectric screening, and laser irradiation have been developed. In particular, the laser irradiation appears to be a more efficient way with good processability and spatial selectivity. However, the underlying mechanism especially about whether chemisorption or physisorption plays a more important role is still debatable. Here, we unravel the mystery of laser irradiation induced photoluminescence enhancement in monolayer WS_(2) by precisely controlling irradiation time and environment. It is found that the synergetic effect of physisorption and chemisorption is responsible for the photoluminescence enhancement, where the physisorption dominates with more than 74% contribution. The comprehensive understanding of the adsorption mechanism in laser-irradiated TMDs may trigger the potential applications for patterned light source, effective photosensor and ultrathin optical memory.
基金This work was supported by the National Key Basic Research Program of China(grant no.:2021YFB3200302)the National Natural Science Foundation of China(grant nos.:51832001 and 52102114)+2 种基金the Fundamental Research Funds for the Central Universities of China,the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(grant nos.:2020GXLH-Z-026 and 2020GXLH-Z-027)the China Postdoctoral Science Foundation(grant nos.:2021M692618 and 2021M702657)the Natural Science Foundation of Shaanxi Province(2021JQ-112).
文摘Most van der Waals two-dimensional(2D)materials without surface dangling bonds show limited surface activities except for their edge sites.Ultrathin Bi_(2)Se_(3),a topological insulator that behaves metal-like under ambient conditions,has been overlooked on its surface activities.Herein,through a topochemical conversion process,ultrathin nanoporous Bi_(2)Se_(3) layers were epitaxially deposited on BiOCl nanosheets with strong electronic coupling,leading to hybrid electronic states with further bandgap narrowing.Such oriented nanoporous Bi_(2)Se_(3) layers possessed largely exposed active edge sites,along with improved surface roughness and film forming ability even on inkjet-printed flexible electrodes.Superior room-temperature NO_(2) sensing performance was achieved compared to other 2D materials under bent conditions.Our work demonstrates that creating nanoscale features in 2D materials through topochemical heteroepitaxy is promising to achieve both favorable electronic properties and surface activity toward practical applications.