期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Reinforced Lewis covalent bond by twinborn nitride heterostructure for lithium-sulfur batteries
1
作者 Yaochen Song Pengkai Tang +11 位作者 Yanjie Wang Yi Wang Linnan Bi Qi Liang Liang He Qingyu Xie Yiyong Zhang Peng Dong Yingjie Zhang Yao Yao jiaxuan liao Sizhe Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期363-372,I0009,共11页
The practical application of lithium-sulfur(Li-S)batteries,as promising next-generation batteries,is hindered by their shuttle effect and the slow redox kinetics.Herein,a tungsten and molybdenum nitride heterostructur... The practical application of lithium-sulfur(Li-S)batteries,as promising next-generation batteries,is hindered by their shuttle effect and the slow redox kinetics.Herein,a tungsten and molybdenum nitride heterostructure functionalized with hollow metal-organic framework-derived carbon(W_(2)N/Mo_(2)N)was proposed as the sulfur host.The hollow spherical structure provides storage space for sulfur,enhances electrical conductivity,and inhibits volume expansion.The metal atoms in the nitrides bonded with lithium polysulfides(Li PSs)through Lewis covalent bonds,enhancing the high catalytic activity of the nitrides and effectively reducing the energy barrier of Li PSs redox conversion.Moreover,the high intrinsic conductivity of nitrides and the ability of the heterostructure interface to accelerate electron/ion transport improved the Li+transmission.By leveraging the combined properties of strong adsorption and high catalytic activity,the sulfur host effectively inhibited the shuttle effect and accelerated the redox kinetics of Li PSs.High-efficiency Li+transmission,strong adsorption,and the efficient catalytic conversion activities of Li PSs in the heterostructure were experimentally and theoretically verified.The results indicate that the W_(2)N/Mo_(2)N cathode provides stable,and long-term cycling(over 2000 cycles)at 3 C with a low attenuation rate of 0.0196%per cycle.The design strategy of a twinborn nitride heterostructure thus provides a functionalized solution for advanced Li-S batteries. 展开更多
关键词 HETEROSTRUCTURE Adsorption Redox kinetics
下载PDF
A highly ionic transference number eutectogel hybrid electrolytes based on spontaneous coupling inhibitor for solid-state lithium metal batteries 被引量:2
2
作者 Linnan Bi Xiongbang Wei +5 位作者 Yuhong Qiu Yaochen Song Xin Long Zhi Chen Sizhe Wang jiaxuan liao 《Nano Research》 SCIE EI CSCD 2023年第1期1717-1725,共9页
Polymer-based solid electrolytes have been extensively studied for solid-state lithium metal batteries to achieve high energy density and reliable security.But,its practical application is severely limited by low ioni... Polymer-based solid electrolytes have been extensively studied for solid-state lithium metal batteries to achieve high energy density and reliable security.But,its practical application is severely limited by low ionic conductivity and slow Li+transference.Herein,based on the“binary electrolytes”of poly(vinylidene fluoride-chlorotrifluoroethylene)(P(VDF-CTFE))and lithium salt(LiTFSI),a kind of eutectogel hybrid electrolytes(EHEs)with high Li+transference number was developed via tuning the spontaneous coupling of charge and vacated space generated by Li-cation diffusion utilizing the Li6.4La3Zr1.4Ta0.6O12(LLZTO)dopant.LLZTO doping promotes the dissociation of lithium salt,increases Li+carrier density,and boosts ion jumping and the coordination/decoupling reactions of Li+.As a result,the optimized EHEs-10%possess a high Li-transference number of 0.86 and a high Li+conductivity of 3.2×10–4 S·cm–1 at room temperature.Moreover,the prepared EHEs-10%composite solid electrolyte presents excellent lithiumphilic and compatibility,and can be tested stably for 1,200 h at 0.3 mA·cm–2 with assembled lithium symmetric batteries.Likewise,the EHEs-10%films match well with high-loading LiFePO4 and LiCoO2 cathodes(>10 mg·cm–2)and exhibit remarkable interface stability.Particularly,the LiFePO4//EHEs-10%//Li and LiCoO2//EHEs-10%//Li cells deliver high rate performance of 118 mAh·g–1 at 1 C and 93.7 mAh·g–1 at 2 C with coulombic efficiency of 99.3%and 98.1%,respectively.This work provides an in-depth understanding and new insights into our design for polymer electrolytes with fast Li+diffusion. 展开更多
关键词 poly(vinylidene fluoride-chlorotrifluoroethylene)(P(VDF-CTFE)) Li6.4La3Zr1.4Ta0.6O12(LLZTO) ionic transference numbers eutectic solvent composite electrolytes solid state lithium metal battery
原文传递
MXene derivative Ta_(4)C_(3)-Ta_(2)O_(5) heterostructure as bi-functional barrier for Li-S batteries 被引量:1
3
作者 Qi Liang Sizhe Wang +6 位作者 Xiaohua Jia Jin Yang Yong Li Dan Shao Lei Feng jiaxuan liao Haojie Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第20期89-98,共10页
The shuttle effect of polysulfides during the charging and discharging of lithium-sulfur(Li-S)batteries and the growth of Li dendrites are crucial obstacles to hinder the commercialization of Li-S batteries.Heterostru... The shuttle effect of polysulfides during the charging and discharging of lithium-sulfur(Li-S)batteries and the growth of Li dendrites are crucial obstacles to hinder the commercialization of Li-S batteries.Heterostructure engineering is an effective strategy to accelerate catalytic conversion and suppress the dissolution of polysulfides.Herein,we report a Ta_(4)C_(3)-Ta_(2)O_(5) heterostructure composite as a bi-functional modified separator that not only achieves effective protection for lithium metal but also accelerates the polysulfides redox kinetics process.This heterostructure possesses efficient chemical anchoring and abundant active sites to immobilize polysulfides by synergistic effect,which endows a stable long cycling performance for Li-S batteries.This corresponds to an initial high capacity of 801.9 mAh g^(–1) at 1 C with a decay rate of 0.086%for 500 cycles.Due to its high Young’s modulus(up to 384 GPa),Ta_(4)C_(3) contributes to forming a protective layer on the Li metal surface to inhibit the growth of Li dendrites.Accordingly,the symmetrical cell has a stable overpotential for 700 cycles at 20 mA cm^(–2)/20 mAh cm^(–2).So,this“one stone two birds”design affords a novel perspective for high-energy Li-S battery storage system design and Li metal protection. 展开更多
关键词 MXene Ta_(4)C_(3) Ta_(2)O_(5) Lithium-sulfur batteries Li metal protection
原文传递
Sandwich-type composite multilayer films of strontium titanate and barium strontium titanate and their controllable dielectric properties 被引量:1
4
作者 Wenlong Liu Lin Tao +2 位作者 Wei Feng jiaxuan liao Lingzhao Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第26期245-254,共10页
It is a challenge to reduce the dielectric loss and increase the tunability of pure barium strontium titanate(BST)films for microwave tunable application because these two properties change simultaneously.Herein,a nov... It is a challenge to reduce the dielectric loss and increase the tunability of pure barium strontium titanate(BST)films for microwave tunable application because these two properties change simultaneously.Herein,a novel composite of strontium titanate(ST)and potassium-doped BST(KBST)has been designed as ST/KBST/ST sandwich-type film with various ST and KBST layers.X-ray diffraction patterns show that the film exhibits cubic perovskite polycrystalline structure composed of BST and ST phase,mainly grow along(110)crystal plane with average grain size of less than 20 nm and decreasing BST phase/ST phase ratio with increasing film thickness.Scanning electron microscope shows that no interfacial layer can be observed,indicating that ST and KBST are fully compounded.Low dielectric loss and high tunability at-10-10 V and stable and excellent dielectric properties at 1 GHz are achieved,meeting the needs of microwave tunable application at high frequency.The surface structures are also studied by other analysis methods,and ST/MgBST/ST sandwich-type film is compared. 展开更多
关键词 ST/KBST/ST SANDWICH-TYPE Multilayer film Controllable dielectric performance High frequency application
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部