The blood system originates from hematopoietic stem cells(HSCs),capable of self-renewal and differentiation,generating diverse blood cell types(Eaves,2015;Lucas,2021).The concept of the hematopoietic niche was first p...The blood system originates from hematopoietic stem cells(HSCs),capable of self-renewal and differentiation,generating diverse blood cell types(Eaves,2015;Lucas,2021).The concept of the hematopoietic niche was first proposed in 1978(Schofield,1978),which is crucial for maintaining hematopoietic balance.The following studies,particularly in mammals,have utilized targeted genetic manipulation to identify and define these niches.展开更多
With its unique and exclusive linear and nonlinear optical characteristics,epsilon-near-zero(ENZ)photonics has drawn a tremendous amount of attention in the recent decade in the fields of nanophotonics,nonlinear optic...With its unique and exclusive linear and nonlinear optical characteristics,epsilon-near-zero(ENZ)photonics has drawn a tremendous amount of attention in the recent decade in the fields of nanophotonics,nonlinear optics,plasmonics,light-matter interactions,material science,applied optical science,etc.The extraordinary optical properties,relatively high tuning flexibility,and CMOS compatibility of ENZ materials make them popular and competitive candidates for nanophotonic devices and on-chip integration in all-optical and electro-optical platforms.With exclusive features and high performance,ENZ photonics can play a big role in optical communications and optical data processing.In this review,we give a focused discussion on recent advances of the theoretical and experimental studies on ENZ photonics,especially in the regime of nonlinear ENZ nanophotonics and its applications.First,we overview the basics of the ENZ concepts,mechanisms,and nonlinear ENZ nanophotonics.Then the new advancements in theoretical and experimental optical physics are reviewed.For nanophotonic applications,the recent decades saw rapid developments in various kinds of different ENZ-based devices and systems,which are discussed and analyzed in detail.Finally,we give our perspectives on where future endeavors can be made.展开更多
In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network (PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different ...In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network (PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different from traditional vacuum/dielectric optical waveguide networks, 1D PTSPROWN cannot produce a photouic ordinary propagation mode, but can generate simultaneously two kinds of photonic nonpropagation modes: attenuation propagation mode and gain propagation mode. It creates neither passband nor stopband and possesses no photonic band structure. This makes 1D PTSPROWN possess richer spontaneous PT-symmetric breaking points and causes interesting extremum spontaneous PT-symmetric breaking points to appear, where electromagnetic waves can create ultrastrong extraordinary transmission, reflection, and localization, and the maximum can arrive at 6.6556 × 10^12 and is more than 7 orders of magnitude larger than the results reported previously. 1D PTSPROWN may possess potential in designing high-efficiency optical energy saver devices, optical amplifiers, optical switches with ultrahigh monochromaticity, and so on.展开更多
基金supported by the National Key Research and Development Program of China(2018YFA0800200)the National Natural Science Foundation of China/ResearchGrantsCouncilJointResearchScheme(31961160726)+1 种基金the National Natural Science Foundation of China(32170827 and 32370886)the Research Grants Council of Hong Kong(RGC/NFSC N_HKUST603/19).
文摘The blood system originates from hematopoietic stem cells(HSCs),capable of self-renewal and differentiation,generating diverse blood cell types(Eaves,2015;Lucas,2021).The concept of the hematopoietic niche was first proposed in 1978(Schofield,1978),which is crucial for maintaining hematopoietic balance.The following studies,particularly in mammals,have utilized targeted genetic manipulation to identify and define these niches.
基金Shenzhen Science and Technology Innovation Commission(GJHZ2018411185015272)Guangdong Basic and Applied Basic Research Foundation(2021A1515011450,2021A1515012176)Youth Science and Technology Innovation Talent of Guangdong Province(2019TQ05X227)。
文摘With its unique and exclusive linear and nonlinear optical characteristics,epsilon-near-zero(ENZ)photonics has drawn a tremendous amount of attention in the recent decade in the fields of nanophotonics,nonlinear optics,plasmonics,light-matter interactions,material science,applied optical science,etc.The extraordinary optical properties,relatively high tuning flexibility,and CMOS compatibility of ENZ materials make them popular and competitive candidates for nanophotonic devices and on-chip integration in all-optical and electro-optical platforms.With exclusive features and high performance,ENZ photonics can play a big role in optical communications and optical data processing.In this review,we give a focused discussion on recent advances of the theoretical and experimental studies on ENZ photonics,especially in the regime of nonlinear ENZ nanophotonics and its applications.First,we overview the basics of the ENZ concepts,mechanisms,and nonlinear ENZ nanophotonics.Then the new advancements in theoretical and experimental optical physics are reviewed.For nanophotonic applications,the recent decades saw rapid developments in various kinds of different ENZ-based devices and systems,which are discussed and analyzed in detail.Finally,we give our perspectives on where future endeavors can be made.
基金National Natural Science Foundation of China(NSFC)(11674107,11775083,61475049,61771205,61774062)Natural Science Foundation of Guangdong Province(2015A030313374)Scientific Research Foundation of Graduate School of South China Normal University(2015lkxm27,2017lkxm091)
文摘In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network (PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different from traditional vacuum/dielectric optical waveguide networks, 1D PTSPROWN cannot produce a photouic ordinary propagation mode, but can generate simultaneously two kinds of photonic nonpropagation modes: attenuation propagation mode and gain propagation mode. It creates neither passband nor stopband and possesses no photonic band structure. This makes 1D PTSPROWN possess richer spontaneous PT-symmetric breaking points and causes interesting extremum spontaneous PT-symmetric breaking points to appear, where electromagnetic waves can create ultrastrong extraordinary transmission, reflection, and localization, and the maximum can arrive at 6.6556 × 10^12 and is more than 7 orders of magnitude larger than the results reported previously. 1D PTSPROWN may possess potential in designing high-efficiency optical energy saver devices, optical amplifiers, optical switches with ultrahigh monochromaticity, and so on.