Nowadays, most positioning systems carry out locational calculation based on the accurate location information of some devices in the network. However there is a deviation in the locational information of the part of ...Nowadays, most positioning systems carry out locational calculation based on the accurate location information of some devices in the network. However there is a deviation in the locational information of the part of the device, we need to reduce it in order to obtain higher positioning accuracy. In this paper, we proposed a new centralized D2D(Device-to-Device) co-location algorithm. This algorithm uses DBSACN(Density-Based Spatial Clustering of Applications with Noise) clustering to reduce the deviation of device location information. Numerical results show that the positioning accuracy of the centralized D2D co-localization algorithm is improved by 62.7% compared with the SPAWN algorithm, which positioning performance superior to the traditional co-localization algorithm.展开更多
基金financially supported by the National Key Research&Development Program under Grant No.2018YFC0809702。
文摘Nowadays, most positioning systems carry out locational calculation based on the accurate location information of some devices in the network. However there is a deviation in the locational information of the part of the device, we need to reduce it in order to obtain higher positioning accuracy. In this paper, we proposed a new centralized D2D(Device-to-Device) co-location algorithm. This algorithm uses DBSACN(Density-Based Spatial Clustering of Applications with Noise) clustering to reduce the deviation of device location information. Numerical results show that the positioning accuracy of the centralized D2D co-localization algorithm is improved by 62.7% compared with the SPAWN algorithm, which positioning performance superior to the traditional co-localization algorithm.