Short-chain chlorinated paraffins(SCCPs) are produced in high volume and have the high potential to pose a threat to human health. However, little information is available for SCCP contamination in human blood/plasma/...Short-chain chlorinated paraffins(SCCPs) are produced in high volume and have the high potential to pose a threat to human health. However, little information is available for SCCP contamination in human blood/plasma/serum, mainly due to the difficulty of sample preparation and quantitative analysis. A method using high resolution gas chromatography coupled with electron capture negative ionization low resolution mass spectrometry(HRGC–ECNI/LRMS) was developed and validated to measure SCCPs in human plasma. The pretreatment process included protein denaturation and lipid elimination, liquid–liquid extraction with a mixture of n-hexane/dichloromethane(1:1, V/V), and cleanup on a multilayer silica column. The blank controls, including procedural blank, vacuum blood collection tube blank, and instrumental blank, were the most pivotal points for the reliable analysis of SCCPs. The average value of procedural blanks was 9.0 ng/g; and the method detection limit(MDL), calculated as the sum of the average procedural blank value and 3 times of the standard deviation of the procedural blanks, was 12.6 ng/g plasma. The validated method was applied to measure the concentrations of the total SCCPs(∑ SCCPs) in50 plasma samples from a general population. The measured plasma concentrations of ∑SCCPs ranged from <MDL to 203 ng/g wet weight(ww), with an average value of 32.0 ng/g ww.The relative abundance profiles of SCCPs in plasma samples were dominated by C10- and C11-CP congener groups centered on Cl6–7. The developed method can be used for the comprehensive and large-scale investigation of SCCP levels in human plasma.展开更多
基金supported by the National Natural Science Foundation of China (No.21337002)the National Basic Research Program (973) of China (No.2015CB453100)
文摘Short-chain chlorinated paraffins(SCCPs) are produced in high volume and have the high potential to pose a threat to human health. However, little information is available for SCCP contamination in human blood/plasma/serum, mainly due to the difficulty of sample preparation and quantitative analysis. A method using high resolution gas chromatography coupled with electron capture negative ionization low resolution mass spectrometry(HRGC–ECNI/LRMS) was developed and validated to measure SCCPs in human plasma. The pretreatment process included protein denaturation and lipid elimination, liquid–liquid extraction with a mixture of n-hexane/dichloromethane(1:1, V/V), and cleanup on a multilayer silica column. The blank controls, including procedural blank, vacuum blood collection tube blank, and instrumental blank, were the most pivotal points for the reliable analysis of SCCPs. The average value of procedural blanks was 9.0 ng/g; and the method detection limit(MDL), calculated as the sum of the average procedural blank value and 3 times of the standard deviation of the procedural blanks, was 12.6 ng/g plasma. The validated method was applied to measure the concentrations of the total SCCPs(∑ SCCPs) in50 plasma samples from a general population. The measured plasma concentrations of ∑SCCPs ranged from <MDL to 203 ng/g wet weight(ww), with an average value of 32.0 ng/g ww.The relative abundance profiles of SCCPs in plasma samples were dominated by C10- and C11-CP congener groups centered on Cl6–7. The developed method can be used for the comprehensive and large-scale investigation of SCCP levels in human plasma.