期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Online Identification of Lithium-ion Battery Model Parameters with Initial Value Uncertainty and Measurement Noise
1
作者 Xinghao Du Jinhao Meng +4 位作者 Kailong Liu Yingmin Zhang Shunli Wang jichang peng Tianqi Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期305-314,共10页
Online parameter identification is essential for the accuracy of the battery equivalent circuit model(ECM).The traditional recursive least squares(RLS)method is easily biased with the noise disturbances from sensors,w... Online parameter identification is essential for the accuracy of the battery equivalent circuit model(ECM).The traditional recursive least squares(RLS)method is easily biased with the noise disturbances from sensors,which degrades the modeling accuracy in practice.Meanwhile,the recursive total least squares(RTLS)method can deal with the noise interferences,but the parameter slowly converges to the reference with initial value uncertainty.To alleviate the above issues,this paper proposes a co-estimation framework utilizing the advantages of RLS and RTLS for a higher parameter identification performance of the battery ECM.RLS converges quickly by updating the parameters along the gradient of the cost function.RTLS is applied to attenuate the noise effect once the parameters have converged.Both simulation and experimental results prove that the proposed method has good accuracy,a fast convergence rate,and also robustness against noise corruption. 展开更多
关键词 Li-ion battery Equivalent circuit model Recursive least squares Recursive total least squares
下载PDF
An Enhanced Data-Driven Model for Lithium-Ion Battery State-of-Health Estimation with Optimized Features and Prior Knowledge
2
作者 Huanyang Huang Jinhao Meng +6 位作者 Yuhong Wang Lei Cai jichang peng Ji Wu Qian Xiao Tianqi Liu Remus Teodorescu 《Automotive Innovation》 EI CSCD 2022年第2期134-145,共12页
In the long-term prediction of battery degradation,the data-driven method has great potential with historical data recorded by the battery management system.This paper proposes an enhanced data-driven model for Lithiu... In the long-term prediction of battery degradation,the data-driven method has great potential with historical data recorded by the battery management system.This paper proposes an enhanced data-driven model for Lithium-ion(Li-ion)battery state of health(SOH)estimation with a superior modeling procedure and optimized features.The Gaussian process regression(GPR)method is adopted to establish the data-driven estimator,which enables Li-ion battery SOH estimation with the uncertainty level.A novel kernel function,with the prior knowledge of Li-ion battery degradation,is then introduced to improve the mod-eling capability of the GPR.As for the features,a two-stage processing structure is proposed to find a suitable partial charging voltage profile with high efficiency.In the first stage,an optimal partial charging voltage is selected by the grid search;while in the second stage,the principal component analysis is conducted to increase both estimation accuracy and computing efficiency.Advantages of the proposed method are validated on two datasets from different Li-ion batteries:Compared with other methods,the proposed method can achieve the same accuracy level in the Oxford dataset;while in Maryland dataset,the mean absolute error,the root-mean-squared error,and the maximum error are at least improved by 16.36%,32.43%,and 45.46%,respectively. 展开更多
关键词 Li-ion battery State of health Gaussian process regression Kernel function Feature optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部