In this paper,we investigate the L^(2) boundedness of the Fourier integral operator Tφ,a with smooth and rough symbols and phase functions which satisfy certain non-degeneracy conditions.In particular,if the symbol a...In this paper,we investigate the L^(2) boundedness of the Fourier integral operator Tφ,a with smooth and rough symbols and phase functions which satisfy certain non-degeneracy conditions.In particular,if the symbol a∈L∞Smρ,the phase functionφsatisfies some measure conditions and ∇kξφ(·,ξ)L∞≤C|ξ|−k for all k≥2,ξ≠0,and some∈>0,we obtain that Tφ,a is bounded on L^(2) if m<n2 min{ρ−1,−2}.This result is a generalization of a result of Kenig and Staubach on pseudo-differential operators and it improves a result of Dos Santos Ferreira and Staubach on Fourier integral operators.Moreover,the Fourier integral operator with rough symbols and inhomogeneous phase functions we study in this paper can be used to obtain the almost everywhere convergence of the fractional Schr odinger operator.展开更多
In this paper, we study two different extensions of the Hausdorff operator to the multilinear case. Boundedness on Lebesgue spaces and Herz spaces is obtained. The bound on the Lebesgue space is optimal. Our results a...In this paper, we study two different extensions of the Hausdorff operator to the multilinear case. Boundedness on Lebesgue spaces and Herz spaces is obtained. The bound on the Lebesgue space is optimal. Our results are substantial extensions of some known results on Multilinear high dimensional Hardy operator.展开更多
Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that ...Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that H n,α,β is bounded on L2 if and only if β ≥ (n + 1)α. Our work extends and improves some known results.展开更多
Abstract In this paper, we study Triebel-Lizorkin space estimates for an oscillating multiplier mΩ,α,β. This operator was initially studied by Wainger and by Fefferman-Stein in the Lebesgue spaces. We obtain the bo...Abstract In this paper, we study Triebel-Lizorkin space estimates for an oscillating multiplier mΩ,α,β. This operator was initially studied by Wainger and by Fefferman-Stein in the Lebesgue spaces. We obtain the boundedness results on the Triebel-Lizorkin space Fpα,q(R^n) for different p, q.展开更多
In this paper, we study the commutator generalized by a multiplier and a Lipschitz function. Under some assumptions, we establish the boundedness properties of it from L^P(R^n) into Fp^β,∞(R^n), the Triebel Lizo...In this paper, we study the commutator generalized by a multiplier and a Lipschitz function. Under some assumptions, we establish the boundedness properties of it from L^P(R^n) into Fp^β,∞(R^n), the Triebel Lizorkin spaces.展开更多
A generalized incompressable magnetohydrodynamics system is considered in this paper.Furthermore, results of global well-posednenss are established with the aid of Littlewood–Paley decomposition and Fourier localizat...A generalized incompressable magnetohydrodynamics system is considered in this paper.Furthermore, results of global well-posednenss are established with the aid of Littlewood–Paley decomposition and Fourier localization method in mentioned system with small initial condition in the variable exponent Fourier–Besov–Morrey spaces. Moreover, the Gevrey class regularity of the solution is also achieved in this paper.展开更多
Let L be a second order positive,elliptic differential operator that is self-adjoint with respect to some C^(∞)density dx on a compact connected manifold M.We proved that if 0<α<1,α/2<s<αand f∈H^(s)(M...Let L be a second order positive,elliptic differential operator that is self-adjoint with respect to some C^(∞)density dx on a compact connected manifold M.We proved that if 0<α<1,α/2<s<αand f∈H^(s)(M)then the fractional Schrodinger propagator e^(itLα/2) on M satisfies eitLα/2 f(x)−f(x)=o(t^(s/α−ε))almost everywhere as t→0^(+),for anyε>0.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.12071437)National key R&D program of China(Grant No.2022YFA1005703)。
文摘In this paper,we investigate the L^(2) boundedness of the Fourier integral operator Tφ,a with smooth and rough symbols and phase functions which satisfy certain non-degeneracy conditions.In particular,if the symbol a∈L∞Smρ,the phase functionφsatisfies some measure conditions and ∇kξφ(·,ξ)L∞≤C|ξ|−k for all k≥2,ξ≠0,and some∈>0,we obtain that Tφ,a is bounded on L^(2) if m<n2 min{ρ−1,−2}.This result is a generalization of a result of Kenig and Staubach on pseudo-differential operators and it improves a result of Dos Santos Ferreira and Staubach on Fourier integral operators.Moreover,the Fourier integral operator with rough symbols and inhomogeneous phase functions we study in this paper can be used to obtain the almost everywhere convergence of the fractional Schr odinger operator.
基金supported by NSF of China(Grant Nos.10931001,10871173)supported by NSF of China(Grant No.11026104)
文摘In this paper, we study two different extensions of the Hausdorff operator to the multilinear case. Boundedness on Lebesgue spaces and Herz spaces is obtained. The bound on the Lebesgue space is optimal. Our results are substantial extensions of some known results on Multilinear high dimensional Hardy operator.
文摘Consider the oscillatory hyper-Hilbert transform Hn,α,βf(x)=∫0^1 f(x-Г(t))e^it-βt^-1-α dt along the curve P(t) = (tp1, tP2,..., tpn), where β 〉 α ≥ 0 and 0 〈 p1 〈 p2 〈 ... 〈 Pn. We prove that H n,α,β is bounded on L2 if and only if β ≥ (n + 1)α. Our work extends and improves some known results.
基金Supported by National Natural Science Foundation of China (Grant Nos.10931001 and 10871173)
文摘Abstract In this paper, we study Triebel-Lizorkin space estimates for an oscillating multiplier mΩ,α,β. This operator was initially studied by Wainger and by Fefferman-Stein in the Lebesgue spaces. We obtain the boundedness results on the Triebel-Lizorkin space Fpα,q(R^n) for different p, q.
基金973 Project of P.R.China (No.G1999075105)NSFZJ(No.RC97017)
文摘In this paper, we study the commutator generalized by a multiplier and a Lipschitz function. Under some assumptions, we establish the boundedness properties of it from L^P(R^n) into Fp^β,∞(R^n), the Triebel Lizorkin spaces.
基金The Research was Supported by Zhejiang Normal University Postdoctoral Research fund under(Grant No.ZC304020909)NSF of China(Grant No.10271437)。
文摘A generalized incompressable magnetohydrodynamics system is considered in this paper.Furthermore, results of global well-posednenss are established with the aid of Littlewood–Paley decomposition and Fourier localization method in mentioned system with small initial condition in the variable exponent Fourier–Besov–Morrey spaces. Moreover, the Gevrey class regularity of the solution is also achieved in this paper.
基金Supported by National Natural Science Foundation of China(Grant Nos.11971295,12071437,11871436 and 11871108)Natural Science Foundation of Shanghai(Grant No.19ZR1417600)。
文摘Let L be a second order positive,elliptic differential operator that is self-adjoint with respect to some C^(∞)density dx on a compact connected manifold M.We proved that if 0<α<1,α/2<s<αand f∈H^(s)(M)then the fractional Schrodinger propagator e^(itLα/2) on M satisfies eitLα/2 f(x)−f(x)=o(t^(s/α−ε))almost everywhere as t→0^(+),for anyε>0.