The dissipation function in turbulent plane Poiseuille flows(PPFs) and plane Couette flows(PCFs) subject to spanwise rotations is analyzed. It is found that, in the PCFs without system rotations, the mean part is cons...The dissipation function in turbulent plane Poiseuille flows(PPFs) and plane Couette flows(PCFs) subject to spanwise rotations is analyzed. It is found that, in the PCFs without system rotations, the mean part is constant while the fluctuation part follows a logarithmic law, resulting in a similar logarithmic skin friction law as PPFs.However, if the flow system rotates in the spanwise direction, no obvious dependence on the rotation number can be evaluated. In the PPFs with rotations, the dissipation function shows an increase with the rotation number, while in the PCFs with rotations,when the rotation number increases, the dissipation function first decreases and then increases.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11772297 and11822208)
文摘The dissipation function in turbulent plane Poiseuille flows(PPFs) and plane Couette flows(PCFs) subject to spanwise rotations is analyzed. It is found that, in the PCFs without system rotations, the mean part is constant while the fluctuation part follows a logarithmic law, resulting in a similar logarithmic skin friction law as PPFs.However, if the flow system rotates in the spanwise direction, no obvious dependence on the rotation number can be evaluated. In the PPFs with rotations, the dissipation function shows an increase with the rotation number, while in the PCFs with rotations,when the rotation number increases, the dissipation function first decreases and then increases.