Motivated by the application of (Ti, Al)N alloy compound in the coating layer, the ternary phase diagram of Ti-Al-N was analyzed by the calculation of the phase diagram (CALPHAD) technique. The isothermal sections...Motivated by the application of (Ti, Al)N alloy compound in the coating layer, the ternary phase diagram of Ti-Al-N was analyzed by the calculation of the phase diagram (CALPHAD) technique. The isothermal sections of the Ti-Al-N ternary system were constructed and compared with the literature experimental results. The thermodynamic parameters of the Ti-Al-N ternary system and the related Ti-N and Al-N binary systems were adopted from literatures, whereas, those of the Ti-Al binary from the literatures were adjusted according to both the ternary and the binary phase equilibria. The consistency between the calculated results and the experimental data shows that considering the ternary thermodynamic relationship, the adjustments to the thermodynamic parameters of the related binaries are necessary.展开更多
基金This study was financially supported by the National Natural Science Foundation of China (No.50671009)the National Doc-torate Fund of the Education Ministry of China (No.20060008015).
文摘Motivated by the application of (Ti, Al)N alloy compound in the coating layer, the ternary phase diagram of Ti-Al-N was analyzed by the calculation of the phase diagram (CALPHAD) technique. The isothermal sections of the Ti-Al-N ternary system were constructed and compared with the literature experimental results. The thermodynamic parameters of the Ti-Al-N ternary system and the related Ti-N and Al-N binary systems were adopted from literatures, whereas, those of the Ti-Al binary from the literatures were adjusted according to both the ternary and the binary phase equilibria. The consistency between the calculated results and the experimental data shows that considering the ternary thermodynamic relationship, the adjustments to the thermodynamic parameters of the related binaries are necessary.