According to the pulverized coal combustion flame image texture features of the rotary-kiln oxide pellets sintering process,a combustion working condition recognition method based on the generalized learning vector(GL...According to the pulverized coal combustion flame image texture features of the rotary-kiln oxide pellets sintering process,a combustion working condition recognition method based on the generalized learning vector(GLVQ) neural network is proposed.Firstly,the numerical flame image is analyzed to extract texture features,such as energy,entropy and inertia,based on grey-level co-occurrence matrix(GLCM) to provide qualitative information on the changes in the visual appearance of the flame.Then the kernel principal component analysis(KPCA) method is adopted to deduct the input vector with high dimensionality so as to reduce the GLVQ target dimension and network scale greatly.Finally,the GLVQ neural network is trained by using the normalized texture feature data.The test results show that the proposed KPCA-GLVQ classifer has an excellent performance on training speed and correct recognition rate,and it meets the requirement for real-time combustion working condition recognition for the rotary kiln process.展开更多
Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete t...Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete time system, a design scheme of model-free adaptive (MFA) controller is given. Then, particle swarm optimization (PSO) algorithm is applied to optimizing and setting the key parameters for controller tuning. After that, the MFA controller is used to control the system of polymerizing temperature. Finally, simulation results are given to show that the MAC strategy based on PSO obtains a good controlling performance index.展开更多
基金supported by China Postdoctoral Science Foundation(No.20110491510)Program for Liaoning Excellent Talents in University(No.LJQ2011027)+1 种基金Anshan Science and Technology Project(No.2011MS11)Special Research Foundation of University of Science and Technology of Liaoning(No.2011zx10)
文摘According to the pulverized coal combustion flame image texture features of the rotary-kiln oxide pellets sintering process,a combustion working condition recognition method based on the generalized learning vector(GLVQ) neural network is proposed.Firstly,the numerical flame image is analyzed to extract texture features,such as energy,entropy and inertia,based on grey-level co-occurrence matrix(GLCM) to provide qualitative information on the changes in the visual appearance of the flame.Then the kernel principal component analysis(KPCA) method is adopted to deduct the input vector with high dimensionality so as to reduce the GLVQ target dimension and network scale greatly.Finally,the GLVQ neural network is trained by using the normalized texture feature data.The test results show that the proposed KPCA-GLVQ classifer has an excellent performance on training speed and correct recognition rate,and it meets the requirement for real-time combustion working condition recognition for the rotary kiln process.
基金supported by University of Science and Technology Liaoning,National Financial Security and System Equipment Engineering Research Center(No.USTLKFGJ201502)
文摘Polyvinyl chloride (PVC) polymerizing process is a typical complicated industrial process with the characteristics of large inertia, big time delay and nonlinearity. Firstly, for the general nonlinear and discrete time system, a design scheme of model-free adaptive (MFA) controller is given. Then, particle swarm optimization (PSO) algorithm is applied to optimizing and setting the key parameters for controller tuning. After that, the MFA controller is used to control the system of polymerizing temperature. Finally, simulation results are given to show that the MAC strategy based on PSO obtains a good controlling performance index.