期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Forest-Fire Recognition by Sparse and Collaborative Subspace Clustering
1
作者 Zhen Ye Yifu Jiang +2 位作者 Shihao Shi jiefei yan Lin Bai 《Journal of Applied Mathematics and Physics》 2019年第11期2883-2890,共8页
Traditional forest-fire recognition based on the characteristics of smoke, temperature and light fails to accurately detect and respond to early fires. By analyzing the characteristics of flame, the methods based on a... Traditional forest-fire recognition based on the characteristics of smoke, temperature and light fails to accurately detect and respond to early fires. By analyzing the characteristics of flame, the methods based on aerial image recognition have been widely used, such as RGB-based and HIS-based methods. However, these methods are susceptible to background factors causing interference and false detection. To alleviate these problems, we investigate two subspace clustering methods based on sparse and collaborative representation, respectively, to detect and locate forest fires. Firstly, subspace clustering segments flame from the whole image. Afterwards, sparse or collaborative representation is employed to represent most of the flame information in a dictionary with l1-regularization or l2-regularization term, which results in fewer reconstruction errors. Experimental results show that the proposed SSC and CSC substantially outperform the state-of-the art methods. 展开更多
关键词 Forest Fires Flame RECOGNITION SPARSE SUBSPACE CLUSTERING (SSC) Collabo-rative SUBSPACE CLUSTERING (CSC)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部