Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant chal...Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant challenge.In this study,a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method.The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique,indicating the excellent magnetic loss ability under an external EM field.Then,the in-depth analysis shows that many factors,including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy,primarily contribute to the enhanced EM wave absorption performance.Therefore,the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm.Thus,this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.展开更多
Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more a...Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more attention. Researchers have discovered various types of energy defects in Android applications, which could quickly drain the battery power of mobile devices. Such defects not only cause inconvenience to users, but also frustrate Android developers as diagnosing the energy inefficiency of a software product is a non-trivial task. In this work, we perform a literature review to understand the state of the art of energy inefficiency diagnosis for Android applications. We identified 55 research papers published in recent years and classified existing studies from four different perspectives, including power estimation method, hardware component, types of energy defects, and program analysis approach. We also did a cross-perspective analysis to summarize and compare our studied techniques. We hope that our review can help structure and unify the literature and shed light on future research, as well as drawing developers' attention to build energy-efficient Android applications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51725101,11727807,51672050,61790581,22088101)the Ministry of Science and Technology of China(973 Project Nos.2018YFA0209102 and 2021YFA1200600)Infrastructure and Facility Construction Project of Zhejiang Laboratory.
文摘Rational designing of one-dimensional(1D)magnetic alloy to facilitate electromagnetic(EM)wave attenuation capability in low-frequency(2-6 GHz)microwave absorption field is highly desired but remains a significant challenge.In this study,a composite EM wave absorber made of a FeCoNi medium-entropy alloy embedded in a 1D carbon matrix framework is rationally designed through an improved electrospinning method.The 1D-shaped FeCoNi alloy embedded composite demonstrates the high-density and continuous magnetic network using off-axis electronic holography technique,indicating the excellent magnetic loss ability under an external EM field.Then,the in-depth analysis shows that many factors,including 1D anisotropy and intrinsic physical features of the magnetic medium-entropy alloy,primarily contribute to the enhanced EM wave absorption performance.Therefore,the fabricated EM wave absorber shows an increasing effective absorption band of 1.3 GHz in the low-frequency electromagnetic field at an ultrathin thickness of 2 mm.Thus,this study opens up a new method for the design and preparation of high-performance 1D magnetic EM absorbers.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021A1515012297)the Shenzhen Science and Technology Innovation Commission(R2020A045)the Open Project of Guangdong Provincial Key Laboratory of High-Performance Computing(2021).
文摘Android applications are becoming increasingly powerful in recent years. While their functionality is still of paramount importance to users, the energy efficiency of these applications is also gaining more and more attention. Researchers have discovered various types of energy defects in Android applications, which could quickly drain the battery power of mobile devices. Such defects not only cause inconvenience to users, but also frustrate Android developers as diagnosing the energy inefficiency of a software product is a non-trivial task. In this work, we perform a literature review to understand the state of the art of energy inefficiency diagnosis for Android applications. We identified 55 research papers published in recent years and classified existing studies from four different perspectives, including power estimation method, hardware component, types of energy defects, and program analysis approach. We also did a cross-perspective analysis to summarize and compare our studied techniques. We hope that our review can help structure and unify the literature and shed light on future research, as well as drawing developers' attention to build energy-efficient Android applications.