期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cloud-Assisted Distributed Edge Brains for Multi-Cell Joint Beamforming Optimization for 6G 被引量:1
1
作者 Juan Deng Kaicong Tian +4 位作者 Qingbi Zheng jielin bai Kuo Cui Yitong Liu Guangyi Liu 《China Communications》 SCIE CSCD 2022年第3期36-49,共14页
In 5G networks,optimization of antenna beam weights of base stations has become the key application of AI for network optimization.For 6G,higher frequency bands and much denser cells are expected,and the importance of... In 5G networks,optimization of antenna beam weights of base stations has become the key application of AI for network optimization.For 6G,higher frequency bands and much denser cells are expected,and the importance of automatic and accurate beamforming assisted by AI will become more prominent.In existing network,servers are“patched”to network equipment to act as a centralized brain for model training and inference leading to high transmission overhead,large inference latency and potential risks of data security.Decentralized architectures have been proposed to achieve flexible parameter configuration and fast local response,but it is inefficient in collecting and sharing global information among base stations.In this paper,we propose a novel solution based on a collaborative cloud edge architecture for multi-cell joint beamforming optimization.We analyze the performance and costs of the proposed solution with two other architectural solutions by simulation.Compared with the centralized solution,our solution improves prediction accuracy by 24.66%,and reduces storage cost by 83.82%.Compared with the decentralized solution,our solution improves prediction accuracy by 68.26%,and improves coverage performance by 0.4 dB.At last,the future research work is prospected. 展开更多
关键词 artificial intelligence collaborative cloud edge centralized cloud brain decentralized edge brain 6G mobile communication
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部