期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Transcriptome profiling and RXR gene family identification reveals the molecular mechanism of rapid aging after spawning of cuttlefish Sepiella japonica
1
作者 Zhenyu DONG jiemei zhao +6 位作者 Feng GUO Shuangrui LIN Huai YANG Yingying YE Changfei CHI Hongfei LI Baoying GUO 《Journal of Oceanology and Limnology》 SCIE CAS 2024年第3期865-880,共16页
Sepiella japonica is a worldwide marine cuttlefish species of high economic value.S.japonica routinely modifying behaviors in reproductive life,such as rapid aging until death after spawning,has been recognized in art... Sepiella japonica is a worldwide marine cuttlefish species of high economic value.S.japonica routinely modifying behaviors in reproductive life,such as rapid aging until death after spawning,has been recognized in artificial breeding.However,reproductive behavior at the level of genes is rarely reported,thus,the research on the genetic basis of behavior,reproduction,and artificial breeding was limited.We applied RNA-seq in different stages of reproduction to investigate the reason of rapid aging after spawning,pre-maturity,pre-spawning after maturity,and post-spawning.The retinoid X receptor(RXR)gene family in S.japonica was identified,and 1343–1452 differentially expressed genes(DEGs)in all 3 stages of reproductive life were identified from pairwise m RNA comparisons.Furthermore,through the GO term and KEGG analysis,S.japonica could handle neuronal development and network formation before maturity and have a functional degradation of neural communication,signal transduction,vision,and gene expression after spawning.Eight Sj RXRαs have been identified and they played different roles in growth development or reproduction.Therefore,the regulation of several channels and receptors is the intrinsic molecular mechanism of rapid aging after spawning in S.japonica.This study revealed the survival strategy and provided fundamental data on the level of genes for understanding the reproductive behavior and the reproduction of S.japonica. 展开更多
关键词 Sepiella japonica RAN-seq retinoid X receptor(RXR)gene family rapid aging intrinsic molecular mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部