期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Environmental,economic and exergy analysis of separation of ternary azeotrope by variable pressure extractive distillation based on multi-objective optimization
1
作者 Peizhe Cui Jiafu Xing +5 位作者 Chen Li Mengjin Zhou jifu zhang Yasen Dai Limei Zhong Yinglong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期145-157,共13页
In this work,the ternary azeotrope of tert-butyl alcohol/ethyl acetate/water is separated by extractive distillation(ED)to recover the available constituents and protect the environment.Based on the conductor like shi... In this work,the ternary azeotrope of tert-butyl alcohol/ethyl acetate/water is separated by extractive distillation(ED)to recover the available constituents and protect the environment.Based on the conductor like shielding model and relative volatility method,ethylene glycol was selected as the extractant in the separation process.In addition,in view of the characteristic that the relative volatility between components changes with pressure,the multi-objective optimization method based on nondominated sorting genetic algorithm II optimizes the pressure and the amount of solvent cooperatively to avoid falling into the optimal local solution.Based on the optimal process parameters,the proposed heat-integrated process can reduce the gas emissions by 29.30%.The heat-integrated ED,further coupled with the pervaporation process,can reduce gas emission by 42.36%and has the highest exergy efficiency of 47.56%.In addition,based on the heat-integrated process,the proposed two heat pump assisted heat-integrated ED processes show good economic and environmental performance.The double heat pump assisted heat-integrated ED can reduce the total annual cost by 28.78%and the gas emissions by 55.83%compared with the basis process,which has a good application prospect.This work provides a feasible approach for the separation of ternary azeotropes. 展开更多
关键词 Extractive distillation Optimization MIXTURES SEPARATION
下载PDF
A New Concept Lattice and Incremental Construction Method
2
作者 Sulan zhang jifu zhang Lihua Hu 《通讯和计算机(中英文版)》 2005年第7期1-3,共3页
下载PDF
High-temperature oxidation behavior and analysis of impedance spectroscopy of 7YSZ thermal barrier coating prepared by plasma spray-physical vapor deposition 被引量:5
3
作者 Wenlong CHEN Min LIU +2 位作者 jifu zhang Ziqian DENG Jie MAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第8期1764-1773,共10页
Quasi-columnar structure 7YSZ(yttria stabilized zirconia) thermal barrier coatings(TBCs) are prepared by plasma spray-physical vapor deposition(PS-PVD) onto pretreated and un-pretreated bond coating, respectivel... Quasi-columnar structure 7YSZ(yttria stabilized zirconia) thermal barrier coatings(TBCs) are prepared by plasma spray-physical vapor deposition(PS-PVD) onto pretreated and un-pretreated bond coating, respectively. An isothermal oxidation experiment of 7YSZ TBCs is carried out in the atmosphere of 950 °C in order to simulate the high-temperature oxidation process of engine blades. The isothermal oxidation process of 7YSZ thermal barrier coatings is investigated systematically by impedance spectroscopy. The electrochemical physical model and equivalent circuit of columnar 7YSZ coatings are established. Results show that the isothermal oxidation kinetic curve of columnar 7YSZ thermal barrier coatings appears to follow the parabolic law. A pretreatment of bond coating can reduce the growth rate of the thermally grown oxide(TGO) layer, restraining the initiation and propagation of microcracks between YSZ and TGO layers. The oxidation rate constants of 7YSZ coatings with pretreated and un-pretreated bond coating are 0.101×10^(-12) cm^2·s^(-1) and 0.115 × 10^(-13) cm^2 ·s^(-1), respectively. Impedance analysis shows that the content of oxygen vacancies decreases and the density increases after the TGO layer is oxidized for 150 h. In addition, shrinkage microcracks formed by sintering during the oxidation process is the main reason for an increase of the capacitance and a decrease of the resistance in the grain boundary of YSZ. 展开更多
关键词 Bond coating Impedance spectroscopyIsothermal oxidation PS-PVD TBCS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部