Nitrogen-doped carbon quantum dots(N-CQDs)are nanocomposites that can be synthesized by the hydrothermal method.In this work,N-CQDs with the size of 3.2±1.7 nm was prepared from 1 g citric acid and 2 g urea precu...Nitrogen-doped carbon quantum dots(N-CQDs)are nanocomposites that can be synthesized by the hydrothermal method.In this work,N-CQDs with the size of 3.2±1.7 nm was prepared from 1 g citric acid and 2 g urea precursor in 10 mL water.Electrochemiluminescence(ECL)of the prepared N-CQDs with K2S2O8 as a coreactant was found to reach a high ECL efficiency up to 109%relative to that of the Ru(bpy)_(3)^(2+)/K_(2)S_(2)O_(8),coreactant system,revealing their great potential for electroanalysis.It is probably because that N elements were doped well in this N-CQDs and increased presence of surface states per mass of N-CQDs.From the spooling ECL spectroscopy,it can be found that the ECL spectra exhibited both a red shift compared with their photoluminescence(PL)spectrum and a wavelength shift during the potentiodynamic scan in the ECL evolution and devolution processes,due to various emissive excited states of N-CQDs leading to higher ECL efficiency.This work gives an insight into development of high ECL efficiency N-CQDs for bioanalytical and light emitting applications.展开更多
基金funded by the Natural Sciences and Engineering Research Council of Canada(NSERC,DG RGPIN-2013-201697,DG RGPIN-2018-06556,DG RGPIN-2023-05337,SPG STPGP-2016-493924(Z.D.))New Frontiers in Research Fund,NFRFR-2021-00272(Z.D.)+2 种基金National Natural Science Foundation of China(22004034(X.Q.))Natural Science Foundation of Hunan Province(China)(2020JJ5226(X.Q.))China Scholarship Council(CSC,201908430010(X.Q.)).
文摘Nitrogen-doped carbon quantum dots(N-CQDs)are nanocomposites that can be synthesized by the hydrothermal method.In this work,N-CQDs with the size of 3.2±1.7 nm was prepared from 1 g citric acid and 2 g urea precursor in 10 mL water.Electrochemiluminescence(ECL)of the prepared N-CQDs with K2S2O8 as a coreactant was found to reach a high ECL efficiency up to 109%relative to that of the Ru(bpy)_(3)^(2+)/K_(2)S_(2)O_(8),coreactant system,revealing their great potential for electroanalysis.It is probably because that N elements were doped well in this N-CQDs and increased presence of surface states per mass of N-CQDs.From the spooling ECL spectroscopy,it can be found that the ECL spectra exhibited both a red shift compared with their photoluminescence(PL)spectrum and a wavelength shift during the potentiodynamic scan in the ECL evolution and devolution processes,due to various emissive excited states of N-CQDs leading to higher ECL efficiency.This work gives an insight into development of high ECL efficiency N-CQDs for bioanalytical and light emitting applications.