In this work Gd/La@ZnO nanoflower photocatalyst was successfully synthesized by a co-precipitation method and applied for rhodamine B(Rh B) and tetracycline(TCN) degradation under direct sunlight irradiation.The dopin...In this work Gd/La@ZnO nanoflower photocatalyst was successfully synthesized by a co-precipitation method and applied for rhodamine B(Rh B) and tetracycline(TCN) degradation under direct sunlight irradiation.The doping of rare earth elements extends the optical absorption wavelength of ZnO from UV region(390 nm) to visible-light region(401 nm).In addition,the co-doped ZnO nanoflower exhibits a lower charge recombination efficiency which was confirmed by photoluminescence emission analysis.Moreover,the co-doped ZnO nanoflower exhibits the maximum degradation efficiency of 91% for Rh B and 74% for TCN under sunlight irradiation.The calculated synergistic index of co-doped ZnO is higher than that of the pure ZnO.Reactive radicals’ production was confirmed by terephthalic acid(TA) and nitro-blue tetrazolium(NBT) tests.The holes and hydroxyl(·OH) radicals play the major role in degradation reaction and it was confirmed by scavenger’s test.Moreover,the recycling test confirms the stability of the photocatalyst.展开更多
The occurrence of antibiotics in the environment has recently raised serious concerns regarding their potential threat to human health and aquatic ecosystem. A new magnetic nanocomposite, Fe304@C (Fe304 coated with c...The occurrence of antibiotics in the environment has recently raised serious concerns regarding their potential threat to human health and aquatic ecosystem. A new magnetic nanocomposite, Fe304@C (Fe304 coated with carbon), was synthesized, characterized, and then applied to remove five commonly-used sulfonamides (SAs) from water. Due to its combinational merits of the outer functionalized carbon shell and the inner magnetite core, Fe3O4@C exhibited a high adsorption affinity for selected SAs and a fast magnetic separability. The adsorption kinetics of SAs on Fe304 @ C could be expressed by the pseudo second-order model. The adsorption isotherms were fitted well with the Dual-mode model, revealing that the adsorption process consisted of an initial partitioning stage and a subsequent hole-filling stage. Solution pH exerted a strong impact on the adsorption process with the maximum removal efficiencies (74% to 96%) obtained at pH 4.8 for all selected SAs. Electrostatic force and hydrogen bonding were two major driving forces for adsorption, and electron-donor-acceptor interactions may also make a certain contribution. Because the synthesized Fe304@C showed comprehensive advantages of high adsorptivity, fast magnetic separability, and prominent reusability, it has potential applications in water treatment.展开更多
基金Research Supporting Project(RefRSP-2021/160) King Saud University。
文摘In this work Gd/La@ZnO nanoflower photocatalyst was successfully synthesized by a co-precipitation method and applied for rhodamine B(Rh B) and tetracycline(TCN) degradation under direct sunlight irradiation.The doping of rare earth elements extends the optical absorption wavelength of ZnO from UV region(390 nm) to visible-light region(401 nm).In addition,the co-doped ZnO nanoflower exhibits a lower charge recombination efficiency which was confirmed by photoluminescence emission analysis.Moreover,the co-doped ZnO nanoflower exhibits the maximum degradation efficiency of 91% for Rh B and 74% for TCN under sunlight irradiation.The calculated synergistic index of co-doped ZnO is higher than that of the pure ZnO.Reactive radicals’ production was confirmed by terephthalic acid(TA) and nitro-blue tetrazolium(NBT) tests.The holes and hydroxyl(·OH) radicals play the major role in degradation reaction and it was confirmed by scavenger’s test.Moreover,the recycling test confirms the stability of the photocatalyst.
基金supported by the National Natural Science Foundation of China(No.51221892)the Ministry of Science and Technology of China(No.2012AA062606,2012BAJ25B04)the People Programme(Marie CurieActions) of the European Union’s Seventh Programme FP7/2007-2013 under a REA grant(No.318926)
文摘The occurrence of antibiotics in the environment has recently raised serious concerns regarding their potential threat to human health and aquatic ecosystem. A new magnetic nanocomposite, Fe304@C (Fe304 coated with carbon), was synthesized, characterized, and then applied to remove five commonly-used sulfonamides (SAs) from water. Due to its combinational merits of the outer functionalized carbon shell and the inner magnetite core, Fe3O4@C exhibited a high adsorption affinity for selected SAs and a fast magnetic separability. The adsorption kinetics of SAs on Fe304 @ C could be expressed by the pseudo second-order model. The adsorption isotherms were fitted well with the Dual-mode model, revealing that the adsorption process consisted of an initial partitioning stage and a subsequent hole-filling stage. Solution pH exerted a strong impact on the adsorption process with the maximum removal efficiencies (74% to 96%) obtained at pH 4.8 for all selected SAs. Electrostatic force and hydrogen bonding were two major driving forces for adsorption, and electron-donor-acceptor interactions may also make a certain contribution. Because the synthesized Fe304@C showed comprehensive advantages of high adsorptivity, fast magnetic separability, and prominent reusability, it has potential applications in water treatment.