In this study,Gd and Ca co-doped ceria electrolytes with the compositions of Ce_(0.8)Gd_(0.2-x)Ca_(x)O_(2-δ)(x=0-0.08) were prepared by a novel gel-casting method.The effects of the addition of Ca on the phase compos...In this study,Gd and Ca co-doped ceria electrolytes with the compositions of Ce_(0.8)Gd_(0.2-x)Ca_(x)O_(2-δ)(x=0-0.08) were prepared by a novel gel-casting method.The effects of the addition of Ca on the phase compositions,sintering behavio r,and electrical prope rties of samples were investigated.According to the scanning electron microscope results and relative density measurement results,it is found that the addition of particular quantity of CaO can promote the sintering densification with a uniform grain growth.When the sintering temperature is 1400℃,the sample with 6 mol% addition of Ca has the highest relative density,which reaches 98.5% of the theoretical density.The electrical properties testing results confirm that the electrical conductivity of the samples can be improved significantly by doping appropriate CaO content.The maximum conductivity of 0.082 S/cm can be obtained at 800℃ in the Ce_(0.8)Gd_(0.12)-Ca_(0.06)O_(1.87) sample.It suggests that CaO can be used as an effective sintering aid and a codopant on the optimization of electrical properties for ceria-based electrolytes.展开更多
基金Project supported by the Natural Science Foundation of Anhui Province of China(1708085ME112)。
文摘In this study,Gd and Ca co-doped ceria electrolytes with the compositions of Ce_(0.8)Gd_(0.2-x)Ca_(x)O_(2-δ)(x=0-0.08) were prepared by a novel gel-casting method.The effects of the addition of Ca on the phase compositions,sintering behavio r,and electrical prope rties of samples were investigated.According to the scanning electron microscope results and relative density measurement results,it is found that the addition of particular quantity of CaO can promote the sintering densification with a uniform grain growth.When the sintering temperature is 1400℃,the sample with 6 mol% addition of Ca has the highest relative density,which reaches 98.5% of the theoretical density.The electrical properties testing results confirm that the electrical conductivity of the samples can be improved significantly by doping appropriate CaO content.The maximum conductivity of 0.082 S/cm can be obtained at 800℃ in the Ce_(0.8)Gd_(0.12)-Ca_(0.06)O_(1.87) sample.It suggests that CaO can be used as an effective sintering aid and a codopant on the optimization of electrical properties for ceria-based electrolytes.