To stabilize Ru nanoparticles against sintering is an urgent problem in the utilization of Ru-based catalysts for NH3 synthesis.In the present study,we used Ru-containing ZSM-5 as seeds to crystallize ZSM-5,and the re...To stabilize Ru nanoparticles against sintering is an urgent problem in the utilization of Ru-based catalysts for NH3 synthesis.In the present study,we used Ru-containing ZSM-5 as seeds to crystallize ZSM-5,and the resulted Ru@ZSM-5 catalyst is highly resistant against Ru sintering.According to the results of diffuse reflectance infrared fourier transform spectroscopy(DRIFTS)and transmission electron microscopy(TEM)analyses,the average size of Ru nanoparticles is around 3.6 nm,which is smaller than that of Ru/ZSM-5-IWI prepared by incipient wetness impregnation.In NH3 synthesis(N2:H2=1:3)at 400℃and 1 MPa,Ru@ZSM-5 displays a formation rate of 5.84 mmolNH3 gcat^-1 h^-1,which is much higher than that of Ru/ZSM-5-IWI(2.13 mmolNH3 gcat^-1 h^-1).According to the results of TEM,N2-temperatureprogrammed desorption(N2-TPD),X-ray photoelectron spectroscopy(XPS)and X-ray absorption fine structure(XAFS)studies,it is deduced that the superior performance of Ru@ZSM-5 is attributable to the small particle size and the ample existence of metallic Ru0 sites.This method of zeolite encapsulation is a feasible way to stabilize Ru nanoparticles for NH3 synthesis.展开更多
In the present study,a series of Ru/ZSM-5 catalysts with different pore-size distributions were prepared and investigated for NH3 synthesis.Our studies indicate that Ru/ZSM-5-Mic with micropore structure exhibits supe...In the present study,a series of Ru/ZSM-5 catalysts with different pore-size distributions were prepared and investigated for NH3 synthesis.Our studies indicate that Ru/ZSM-5-Mic with micropore structure exhibits superior NH3 synthesis rate,which is much higher than those of Ru/ZSM-5-Mac(with macroporous structure)and Ru/ZSM-5-Mes(with mesoporous structure)catalysts.A series of TPD experiments demonstrate that pore-size distributions play an important role in N2 adsorption and activation over Ru/ZSM-5.Moreover,the addition of La significantly promotes the NH3 synthesis performance over Ru/ZSM-5-Mic.Additionally,in situ DRIFTS studies indicate that the main intermediate species over Ru/ZSM-5-Mic are-NH2,and most of the surface hydrogen species desorb following the H2O-formation pathway.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars of China(21825801)the National Natural Science Foundation of China(21972019,21978051).
文摘To stabilize Ru nanoparticles against sintering is an urgent problem in the utilization of Ru-based catalysts for NH3 synthesis.In the present study,we used Ru-containing ZSM-5 as seeds to crystallize ZSM-5,and the resulted Ru@ZSM-5 catalyst is highly resistant against Ru sintering.According to the results of diffuse reflectance infrared fourier transform spectroscopy(DRIFTS)and transmission electron microscopy(TEM)analyses,the average size of Ru nanoparticles is around 3.6 nm,which is smaller than that of Ru/ZSM-5-IWI prepared by incipient wetness impregnation.In NH3 synthesis(N2:H2=1:3)at 400℃and 1 MPa,Ru@ZSM-5 displays a formation rate of 5.84 mmolNH3 gcat^-1 h^-1,which is much higher than that of Ru/ZSM-5-IWI(2.13 mmolNH3 gcat^-1 h^-1).According to the results of TEM,N2-temperatureprogrammed desorption(N2-TPD),X-ray photoelectron spectroscopy(XPS)and X-ray absorption fine structure(XAFS)studies,it is deduced that the superior performance of Ru@ZSM-5 is attributable to the small particle size and the ample existence of metallic Ru0 sites.This method of zeolite encapsulation is a feasible way to stabilize Ru nanoparticles for NH3 synthesis.
基金Project supported by the National Natural Science Foundation of China(21972019)。
文摘In the present study,a series of Ru/ZSM-5 catalysts with different pore-size distributions were prepared and investigated for NH3 synthesis.Our studies indicate that Ru/ZSM-5-Mic with micropore structure exhibits superior NH3 synthesis rate,which is much higher than those of Ru/ZSM-5-Mac(with macroporous structure)and Ru/ZSM-5-Mes(with mesoporous structure)catalysts.A series of TPD experiments demonstrate that pore-size distributions play an important role in N2 adsorption and activation over Ru/ZSM-5.Moreover,the addition of La significantly promotes the NH3 synthesis performance over Ru/ZSM-5-Mic.Additionally,in situ DRIFTS studies indicate that the main intermediate species over Ru/ZSM-5-Mic are-NH2,and most of the surface hydrogen species desorb following the H2O-formation pathway.