Nonlinear behavior is important in the vibration test of engineering structures. In this study, a constant response vibration test is proposed for nonlinear element extraction. The method is based on the principle of ...Nonlinear behavior is important in the vibration test of engineering structures. In this study, a constant response vibration test is proposed for nonlinear element extraction. The method is based on the principle of Harmonic Balance Method (HBM). The stiffness or damping can be regarded as constant for particular steady displacement or velocity response. The displacement or velocity is controlled as a constant in the test. Then the measured Frequency Response Function(FRF) is obtained. The equivalent stiffness or damping is estimated using FRFs for a particular vibration response level. The displacement-dependent stiffness and velocity-dependent damping are fitted to describe the unknown non-linearity. The nonlinear spring and damping force can be obtained by combining the fitting results with HBM using first-order expansion. Constant response vibration test is illustrated through experimental setup to verify its effectiveness. Experimental results show that the procedure is capable of achieving an accurate parameter identification of nonlinear damping and stiffness, which is hopeful for industrial application.展开更多
The process of lubricant penetration into frictional interfaces has not been fully established,hence compromising their tribological performance.In this study,the penetration characteristics of deionized water(DI wate...The process of lubricant penetration into frictional interfaces has not been fully established,hence compromising their tribological performance.In this study,the penetration characteristics of deionized water(DI water)containing an electroosmotic suppressant(cetyltrimethylammonium bromide(CTAB))and an electroosmotic promoter(sodium lauriminodipropionate(SLI)),were investigated using steel-onsteel friction pairs.The results indicated that the lubricant with electroosmotic promoter reduced the coefficient of friction and wear scar diameter,whereas that with an electroosmotic suppressant exhibited an opposite behavior compared with DI water.The addition of SLI promoted the penetration of the DI water solution,thus resulting in the formation of a thick lubricating film of iron oxide at the sliding surface.This effectively reduced the abrasion damage,leading to a lower coefficient of friction and wear loss.展开更多
文摘Nonlinear behavior is important in the vibration test of engineering structures. In this study, a constant response vibration test is proposed for nonlinear element extraction. The method is based on the principle of Harmonic Balance Method (HBM). The stiffness or damping can be regarded as constant for particular steady displacement or velocity response. The displacement or velocity is controlled as a constant in the test. Then the measured Frequency Response Function(FRF) is obtained. The equivalent stiffness or damping is estimated using FRFs for a particular vibration response level. The displacement-dependent stiffness and velocity-dependent damping are fitted to describe the unknown non-linearity. The nonlinear spring and damping force can be obtained by combining the fitting results with HBM using first-order expansion. Constant response vibration test is illustrated through experimental setup to verify its effectiveness. Experimental results show that the procedure is capable of achieving an accurate parameter identification of nonlinear damping and stiffness, which is hopeful for industrial application.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.51775507)the Natural Science Foundation of Zhejiang Province(No.LY19E050006).
文摘The process of lubricant penetration into frictional interfaces has not been fully established,hence compromising their tribological performance.In this study,the penetration characteristics of deionized water(DI water)containing an electroosmotic suppressant(cetyltrimethylammonium bromide(CTAB))and an electroosmotic promoter(sodium lauriminodipropionate(SLI)),were investigated using steel-onsteel friction pairs.The results indicated that the lubricant with electroosmotic promoter reduced the coefficient of friction and wear scar diameter,whereas that with an electroosmotic suppressant exhibited an opposite behavior compared with DI water.The addition of SLI promoted the penetration of the DI water solution,thus resulting in the formation of a thick lubricating film of iron oxide at the sliding surface.This effectively reduced the abrasion damage,leading to a lower coefficient of friction and wear loss.