Uniform diamond films are highly desirable for cutting industries, due to their high performance and long lifetime used on cutting tools. Nevertheless, they are difficult to obtain on cutting tools with complicated sh...Uniform diamond films are highly desirable for cutting industries, due to their high performance and long lifetime used on cutting tools. Nevertheless, they are difficult to obtain on cutting tools with complicated shapes, greatly limiting the applications of diamond films. In this study, a novel approach of deposition for uniform diamond films is proposed, on circular saw blades made of cemented carbide using reflectors of brass sheets. Diamond films are deposited using hot filament chemical vapor deposition(HFCVD). A novel concave structure of brass sheets is designed and fabricated, improving the distribution of temperature field, and overcoming the disadvantages of the conventional HFCVD systems. This increases the energy efficiency of use without changing the structure and increasing the cost of HFCVD. The grains are refined and the intensities of diamond peaks are strengthened obviously, which is confirmed by scanning electron microscopy and Raman spectra respectively.展开更多
Electronic packaging materials and thermal interface materials(TIMs)are widely used in thermal management.In this study,the epoxy composites with core-shell structure SiC@SiO_(2) nanowires(SiC@SiO_(2) NWs)as fillers c...Electronic packaging materials and thermal interface materials(TIMs)are widely used in thermal management.In this study,the epoxy composites with core-shell structure SiC@SiO_(2) nanowires(SiC@SiO_(2) NWs)as fillers could effectively enhance the thermal conductivity of epoxy composites.The unique structure of fillers results in a high thermal conductivity of epoxy composites,which is attributed to good interfacial compatibility epoxy matrix and bridging connections of SiC@SiO_(2) NWs.From neat epoxy to 2.5 wt%loading of SiC@SiO_(2) NWs,the thermal conductivity is significantly increased from 0.218 to 0.391 W m^(−1) K^(−1),increased by 79.4%.In addition,the composite with 2.5 wt%filler possess lower coefficient of thermal expansion and better thermal stability than that of neat epoxy.All these outstanding properties imply that epoxy/SiC@SiO_(2) NWs composites could be the ideal candidate for TIM.展开更多
4H-silicon carbides deposited by diamond films have wide applications in many fields such as semiconductor heterojunction,heat sink and mechanical sealing.Nucleation plays a critical role in the deposition of the diam...4H-silicon carbides deposited by diamond films have wide applications in many fields such as semiconductor heterojunction,heat sink and mechanical sealing.Nucleation plays a critical role in the deposition of the diamond film on 4H-silicon carbides.Nevertheless,as a typical polar material,the fundamental mechanism of diamond nucleation on different faces of 4H-silicon carbides has not been fully understood yet.In this contribution,nucleation of diamond was performed on the carbon-and silicon-faces of 4H-silicon carbides in a direct current chemical vapor deposition device.The nucleation density on the carbon-face is higher by 2-3 orders of magnitude compared to the silicon-face.Transmission electron microscopy verifies that there are high density diamond nuclei on the interface between the carbon-face and the diamond film,which is different from columnar diamond growth structure on the silicon-face.Transition state theory calculation reveals that the unprecedented distinction of the nucleation density between the carbon-face and the silicon-face is attributed to different desorption rates of the absorbed hydrocarbon radicals.In addition,kinetic model simulations demonstrate that it is more difficult to form CH2(s)-CH2(s)dimers on silicon-faces than carbon-faces,resulting in much lower nucleation densities on silicon-faces.展开更多
基金financial support from the Fundamental Research Funds for the Central Universities(DUT16QY46)
文摘Uniform diamond films are highly desirable for cutting industries, due to their high performance and long lifetime used on cutting tools. Nevertheless, they are difficult to obtain on cutting tools with complicated shapes, greatly limiting the applications of diamond films. In this study, a novel approach of deposition for uniform diamond films is proposed, on circular saw blades made of cemented carbide using reflectors of brass sheets. Diamond films are deposited using hot filament chemical vapor deposition(HFCVD). A novel concave structure of brass sheets is designed and fabricated, improving the distribution of temperature field, and overcoming the disadvantages of the conventional HFCVD systems. This increases the energy efficiency of use without changing the structure and increasing the cost of HFCVD. The grains are refined and the intensities of diamond peaks are strengthened obviously, which is confirmed by scanning electron microscopy and Raman spectra respectively.
基金The authors are grateful for the financial support by the National Natural Science Foundation of China(51573201 and 51303034)Public Welfare Project of Zhejiang Province(2016C31026)International S&T Cooperation Program of Ningbo(2015D10003)。
文摘Electronic packaging materials and thermal interface materials(TIMs)are widely used in thermal management.In this study,the epoxy composites with core-shell structure SiC@SiO_(2) nanowires(SiC@SiO_(2) NWs)as fillers could effectively enhance the thermal conductivity of epoxy composites.The unique structure of fillers results in a high thermal conductivity of epoxy composites,which is attributed to good interfacial compatibility epoxy matrix and bridging connections of SiC@SiO_(2) NWs.From neat epoxy to 2.5 wt%loading of SiC@SiO_(2) NWs,the thermal conductivity is significantly increased from 0.218 to 0.391 W m^(−1) K^(−1),increased by 79.4%.In addition,the composite with 2.5 wt%filler possess lower coefficient of thermal expansion and better thermal stability than that of neat epoxy.All these outstanding properties imply that epoxy/SiC@SiO_(2) NWs composites could be the ideal candidate for TIM.
基金the National Key Research and Development Project(No.2017YFE0128600)Ningbo 3315 Innovation Team(No.2019A-18-C)+9 种基金Science and Technology Innovation 2025 Major Project of Ningbo(No.2018023)National Defense Key Laboratory Fund(No.6142807180511)Innovation Funding of State Oceanic Administration(No.NBHY-2017-Z3)Ningbo Industrial Technology Innovation Project(No.2016B10038)‘13th Five-Year’Equipment Pre-research Sharing Project(No.E1710161)‘Key Talents’Senior Engineer Project of Ningbo Institute of Materials Technology and Engineeringthe financial support of CONICYT in the project Fondecyt 11180121the financial support given the VID in the framework of U-IniciaUI013/2018 and the academic direction of the University of Chilefinancial support from the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University(Faculty Grant SFO Mat LiU No.200900971)the Swedish Research Council(VR)。
文摘4H-silicon carbides deposited by diamond films have wide applications in many fields such as semiconductor heterojunction,heat sink and mechanical sealing.Nucleation plays a critical role in the deposition of the diamond film on 4H-silicon carbides.Nevertheless,as a typical polar material,the fundamental mechanism of diamond nucleation on different faces of 4H-silicon carbides has not been fully understood yet.In this contribution,nucleation of diamond was performed on the carbon-and silicon-faces of 4H-silicon carbides in a direct current chemical vapor deposition device.The nucleation density on the carbon-face is higher by 2-3 orders of magnitude compared to the silicon-face.Transmission electron microscopy verifies that there are high density diamond nuclei on the interface between the carbon-face and the diamond film,which is different from columnar diamond growth structure on the silicon-face.Transition state theory calculation reveals that the unprecedented distinction of the nucleation density between the carbon-face and the silicon-face is attributed to different desorption rates of the absorbed hydrocarbon radicals.In addition,kinetic model simulations demonstrate that it is more difficult to form CH2(s)-CH2(s)dimers on silicon-faces than carbon-faces,resulting in much lower nucleation densities on silicon-faces.