期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A trailer car dynamics model considering brake rigging of a high-speed train and its application
1
作者 Zhiwei Wang Linchuan Yang +2 位作者 jiliang mo Song Zhu Wenwei Jin 《Railway Engineering Science》 2023年第3期269-280,共12页
Brake systems are essential for the speed regulation or braking of a high-speed train.The vehicle dynamic performance under braking condition is complex and directly affects the reliability and running safety.To revea... Brake systems are essential for the speed regulation or braking of a high-speed train.The vehicle dynamic performance under braking condition is complex and directly affects the reliability and running safety.To reveal the vehicle dynamic behaviour in braking process,a comprehensive trailer car dynamics model(TCDM)considering brake systems is established in this paper.The dynamic interactions between the brake system and the other connected components are achieved using the brake disc-pad frictions,brake suspension systems,and wheel-rail interactions.The force and motion transmission from the brake system to the wheel-rail interface is performed by the proposed TCDM excited by track irregularity.In addition,the validity of TCDM is verified by experimental test results.On this basis,the dynamic behaviour of the coupled system is simulated and discussed.The findings indicate that the braking force significantly affects vehicle dynamic behaviour including the wheel-rail forces,suspension forces,wheelset torsional vibration,etc.The dynamic interactions within the brake system are also significantly affected by the vehicle vibration due to track irregularity.Besides,the developed TCDM can be further employed to the dynamic assessment of such a coupled mechanical system under different braking conditions. 展开更多
关键词 Brake system Disc-pad frictions Wheel-rail interactions Track irregularity High-speed train
下载PDF
Investigation of Experimental Devices for Finger Active and Passive Tactile Friction Analysis
2
作者 Xue Zhou Marc A.Masen +3 位作者 jiliang mo Xinyu Shi Yaosheng He Zhongmin Jin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期129-139,共11页
Complicated tribological behavior occurs when human fingers touch and perceive the surfaces of objects.In this process,people use their exploration style with different conditions,such as contact load,sliding speed,sl... Complicated tribological behavior occurs when human fingers touch and perceive the surfaces of objects.In this process,people use their exploration style with different conditions,such as contact load,sliding speed,sliding direction,and angle of orientation between fingers and object surface consciously or unconsciously.This work addressed interlaboratory experimental devices for finger active and passive tactile friction analysis,showing two types of finger movement.In active sliding experiment,the participant slid their finger freely against the object surface,requiring the subject to control the motion conditions themselves.For passive sliding experiments,these motion conditions were adjusted by the device.Several analysis parameters,such as contact force,vibration acceleration signals,vibration magnitude,and fingerprint deformation were recorded simultaneously.Noticeable friction differences were observed when comparing active sliding and passive sliding.For passive sliding,stick-slip behavior occurred when sliding in the distal direction,evidenced by observing the friction force and the related deformation of the fingerprint ridges.The employed devices showed good repeatability and high reliability,which enriched the design of the experimental platform and provided guidance to the standardization research in the field of tactile friction. 展开更多
关键词 Finger friction Experimental device Active sliding Passive sliding Rotating
下载PDF
Comprehensive modeling strategy for thermomechanical tribological behavior analysis of railway vehicle disc brake system
3
作者 Jiabao YIN Chun LU jiliang mo 《Friction》 SCIE EI CAS CSCD 2024年第1期74-94,共21页
A comprehensive modeling strategy for studying the thermomechanical tribological behaviors is proposed in this work.The wear degradation considering the influence of temperature(T)is predicted by Archard wear model wi... A comprehensive modeling strategy for studying the thermomechanical tribological behaviors is proposed in this work.The wear degradation considering the influence of temperature(T)is predicted by Archard wear model with the help of the UMESHMOTION subroutine and arbitrary Lagrangian–Eulerian(ALE)remeshing technique.Adopting the proposed method,the thermomechanical tribological behaviors of railway vehicle disc brake system composed of forged steel brake disc and Cu-based powder metallurgy(PM)friction block are studied systematically.The effectiveness of the proposed methodology is validated by experimental test on a self-designed scaled brake test bench from the perspectives of interface temperature,wear degradation,friction noise and vibration,and contact status evolution.This work can provide an effective way for the investigation of thermomechanical tribological behaviors in the engineering field. 展开更多
关键词 tribological behaviors thermomechanical field wear prediction finite element simulation disc brake system railway vehicle
原文传递
A Study of Effect of Various Normal Force Loading Forms on Frictional Stick-Slip Vibration
4
作者 Xiaocui Wang Runlan Wang +2 位作者 Bo Huang jiliang mo Huajiang Ouyang 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第1期46-55,共10页
In this work,a comparative study is performed to investigate the influence of time-varying normal forces on the friction properties and friction-induced stick-slip vibration(FIV)by experimental and theoretical methods... In this work,a comparative study is performed to investigate the influence of time-varying normal forces on the friction properties and friction-induced stick-slip vibration(FIV)by experimental and theoretical methods.In the experiments,constant and harmonic-varying normal forces are applied,respectively.The measured vibration signals under two loading forms are compared in both time and frequency domains.In addition,mathematical tools such as phase space reconstruction and Fourier spectra are used to reveal the science behind the complicated dynamic behavior.It can be found that the friction system shows steady stick-slip vibration,and the main frequency does not vary with the magnitude of the constant normal force,but the size of limit cycle increases with the magnitude of the constant normal force.In contrast,the friction system under the harmonic normal force shows complicated behavior,for example,higher-frequency larger-amplitude vibration occurs and looks chaotic as the frequency of the normal force increases.The interesting findings offer a new way for controlling FIV in engineering applications. 展开更多
关键词 stick-slip vibration normal force experimental study phase space reconstruction
下载PDF
Simultaneous energy harvesting and tribological property improvement
5
作者 Xiaofan WANG jiliang mo +3 位作者 Huajiang OUYANG Zaiyu XIANG Wei CHEN Zhongrong ZHOU 《Friction》 SCIE EI CAS CSCD 2021年第5期1275-1291,共17页
In this study,piezoelectric elements were added to a reciprocating friction test bench to harvest friction‐induced vibration energy.Parameters such as vibration acceleration,noise,and voltage signals of the system we... In this study,piezoelectric elements were added to a reciprocating friction test bench to harvest friction‐induced vibration energy.Parameters such as vibration acceleration,noise,and voltage signals of the system were measured and analyzed.The results show that the piezoelectric elements can not only collect vibration energy but also suppress friction‐induced vibration noise(FIVN).Additionally,the wear of the friction interface was examined via optical microscopy(OM),scanning electron microscopy(SEM),and white‐light interferometry(WLI).The results show that the surface wear state improved because of the reduction of FIVN.In order to analyze the experimental results in detail and explain them reasonably,the experimental phenomena were simulated numerically.Moreover,a simplified two‐degree‐of‐freedom numerical model including the original system and the piezoelectric system was established to qualitatively describe the effects,dynamics,and tribological behaviors of the added piezoelectric elements to the original system. 展开更多
关键词 PIEZOELECTRIC friction‐induced vibration(FIV) energy harvester wear state CONTACT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部