How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades,especially under an unpredicted climate change.Crop breeding,initiating from the phenotype-based sel...How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades,especially under an unpredicted climate change.Crop breeding,initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding,has played a critical role in securing the global food supply.However,regarding the changing environment and ever-increasing human population,can we breed outstanding crop varieties fast enough to achieve high productivity,good quality,and widespread adaptability?This review outlines the recent achievements in understanding cereal crop breeding,including the current knowledge about crop agronomic traits,newly developed techniques,crop big biological data research,and the possibility of integrating them for intelligence-driven breeding by design,which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops.This review focuses on the major cereal crops,including rice,maize,and wheat,to explain how intelligence-driven breeding by design is becoming a reality.展开更多
基金supported by the National Science Foundation of China(32341029)Science and Technology Innovation 2030 Major Projects(2023ZD0406804)Outstanding Youth Team Cultivation Project of Center Universities(2662023PY007)。
文摘How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades,especially under an unpredicted climate change.Crop breeding,initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding,has played a critical role in securing the global food supply.However,regarding the changing environment and ever-increasing human population,can we breed outstanding crop varieties fast enough to achieve high productivity,good quality,and widespread adaptability?This review outlines the recent achievements in understanding cereal crop breeding,including the current knowledge about crop agronomic traits,newly developed techniques,crop big biological data research,and the possibility of integrating them for intelligence-driven breeding by design,which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops.This review focuses on the major cereal crops,including rice,maize,and wheat,to explain how intelligence-driven breeding by design is becoming a reality.