The desirable active ingredients for the development of bioproducts based in Bacillus sp. for the control of soil pathogens are the spores because these structures exhibit more resistance and stability to conditions p...The desirable active ingredients for the development of bioproducts based in Bacillus sp. for the control of soil pathogens are the spores because these structures exhibit more resistance and stability to conditions present during the fermentation, formulation, and storage processes. To improve the sporulation of a native strain of Bacillus amyloliquefaciens (Bs006) using liquid fermentation, some modifications in the concentrations of the components in a previously standardized culture media were made. Subsequently, five sporulation inducers (iron nitrate, mixture of salts, peroxide hydrogen, temperature, and initial cell concentration) were evaluated. The treatment with a mixture of salts in combination with an initial cell concentration of 1 × 108 cells/ml was selected because a final spore concentration of 1.05 × 1010 spores/ml after 66 hours with a fully substrate consumption and sporulation efficiency of 88.7% was obtained. To demonstrate the biological activity of B. amyloliquefaciens Bs006 in Cape gooseberry seedlings, a greenhouse bioassay was conducted, and statistical differences in plant growth-promoting parameters compared with previous media were not found. Additionally, the proposed modified media (coded as JM) presented a benefit-cost ratio 2.65 times higher compared with the baseline media.展开更多
基金the Ministry of Agriculture and Rural Development for the financial support to this project.
文摘The desirable active ingredients for the development of bioproducts based in Bacillus sp. for the control of soil pathogens are the spores because these structures exhibit more resistance and stability to conditions present during the fermentation, formulation, and storage processes. To improve the sporulation of a native strain of Bacillus amyloliquefaciens (Bs006) using liquid fermentation, some modifications in the concentrations of the components in a previously standardized culture media were made. Subsequently, five sporulation inducers (iron nitrate, mixture of salts, peroxide hydrogen, temperature, and initial cell concentration) were evaluated. The treatment with a mixture of salts in combination with an initial cell concentration of 1 × 108 cells/ml was selected because a final spore concentration of 1.05 × 1010 spores/ml after 66 hours with a fully substrate consumption and sporulation efficiency of 88.7% was obtained. To demonstrate the biological activity of B. amyloliquefaciens Bs006 in Cape gooseberry seedlings, a greenhouse bioassay was conducted, and statistical differences in plant growth-promoting parameters compared with previous media were not found. Additionally, the proposed modified media (coded as JM) presented a benefit-cost ratio 2.65 times higher compared with the baseline media.