Let X be an infinite-dimensional complex Banach space and denote by B(X) the algebra of all bounded linear operators acting on X. It is shown that a surjective additive map Φ from B(X) onto itself preserves simil...Let X be an infinite-dimensional complex Banach space and denote by B(X) the algebra of all bounded linear operators acting on X. It is shown that a surjective additive map Φ from B(X) onto itself preserves similarity in both directions if and only if there exist a scalar c, a bounded invertible linear or conjugate linear operator A and a similarity invariant additive functional ψ on B(X) such that either Φ(T) = cATA^-1 + ψ(T)I for all T, or Φ(T) = cAT*A^-1 + ψ(T)I for all T. In the case where X has infinite multiplicity, in particular, when X is an infinite-dimensional Hilbert space, the above similarity invariant additive functional ψ is always zero.展开更多
文摘Let X be an infinite-dimensional complex Banach space and denote by B(X) the algebra of all bounded linear operators acting on X. It is shown that a surjective additive map Φ from B(X) onto itself preserves similarity in both directions if and only if there exist a scalar c, a bounded invertible linear or conjugate linear operator A and a similarity invariant additive functional ψ on B(X) such that either Φ(T) = cATA^-1 + ψ(T)I for all T, or Φ(T) = cAT*A^-1 + ψ(T)I for all T. In the case where X has infinite multiplicity, in particular, when X is an infinite-dimensional Hilbert space, the above similarity invariant additive functional ψ is always zero.