期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A unified intrinsic functional expansion theory for solitary waves 被引量:3
1
作者 Theodore Yaotsu Wu John Kao jin e.zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第1期1-15,共15页
A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> do... A new theory is developed here for evaluating solitary waves on water, with results of high accuracy uniformly valid for waves of all heights, from the highest wave with a corner crest of 120<SUP></SUP> down to very low ones of diminishing height. Solutions are sought for the Euler model by employing a unified expansion of the logarithmic hodograph in terms of a set of intrinsic component functions analytically determined to represent all the intrinsic properties of the wave entity from the wave crest to its outskirts. The unknown coefficients in the expansion are determined by minimization of the mean-square error of the solution, with the minimization optimized so as to take as few terms as needed to attain results as high in accuracy as attainable. In this regard, Stokess formula, F<SUP>2</SUP>= tan , relating the wave speed (the Froude number F) and the logarithmic decrement of its wave field in the outskirt, is generalized to establish a new criterion requiring (for minimizing solution error) the functional expansion to contain a finite power series in M terms of Stokess basic term (singular in ), such that 2M is just somewhat beyond unity, i.e. 2M1. This fundamental criterion is fully validated by solutions for waves of various amplitude-to-water depth ratio =a/h, especially about 0.01, at which M=10 by the criterion. In this pursuit, the class of dwarf solitary waves, defined for waves with 0.01, is discovered as a group of problems more challenging than even the highest wave. For the highest wave, a new solution is determined here to give the maximum height <SUB>hst</SUB>=0.8331990, and speed F<SUB>hst</SUB>=1.290890, accurate to the last significant figure, which seems to be a new record. 展开更多
关键词 Solitary waves on water Unified intrinsic functional expansion theory Exact solutions High-accuracy computation of waves of arbitrary height Mass and energy transfer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部