A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level contro...A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation.展开更多
This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom ...This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom (DOFs) and four joints. All the actuators and electronics are integrated in the finger body and the palm. Owing to using a new actuator, drivers and a novel arrangement, both the length and width of the finger is about two third of its formner version. By using the wire coupling mecha- nism, the distal phalanx transmission ratio is kept exactly 1 : 1 in the whole movement range. The packing mechanism which is implemented directly in the finger body and palm not only reduces the size of whole hand but also make it more anthropomorphic. Additionally, the new designed force/torque and position sensors are integrated in the hand for increasing muhisensory capability. To evaluate the performances of the finger mechanism, the position and impedance control experiments are conducted.展开更多
A reconfigurable modular robot was developed for a free-flying robot project. This robot was composed of 6 same modular joints and one gripper. In order to save space and cost for transporting it into the space, the r...A reconfigurable modular robot was developed for a free-flying robot project. This robot was composed of 6 same modular joints and one gripper. In order to save space and cost for transporting it into the space, the robot should be folded overall and locked. A big central hole in the modular joint was designed for the placement of the cables and plugs in the robot arm, which prevented them from damage of high temperature, radiation in the space environment and the motion of the robot. Multiple sensors were integrated into the fully modular joint, such as joint torque sensor, joint position sensor and temperature sensors, which made the joint more intelligent. A zero gravity experimental system was developed to verify the functions of the robot under zero gravity environment.展开更多
Cooperative target identification is the prerequisite for the relative position and orientation measurement between the space robot arm and the to-be-arrested object. We propose an on- orbit real-time robust algorithm...Cooperative target identification is the prerequisite for the relative position and orientation measurement between the space robot arm and the to-be-arrested object. We propose an on- orbit real-time robust algorithm for cooperative target identification in complex background using the features of circle and lines. It first extracts only the interested edges in the target image using an adaptive threshold and refines them to about single-pixel-width with improved non-maximum suppression. Adapting a novel tracking approach, edge segments changing smoothly in tangential directions are obtained. With a small amount of calculation, large numbers of invalid edges are removed. From the few remained edges, valid circular arcs are extracted and reassembled to obtain circles according to a reliable criterion. Finally, the target is identified if there are certain numbers of straight lines whose relative positions with the circle match the known target pattern. Experiments demonstrate that the proposed algorithm accurately identifies the cooperative target within the range of 0.3 1.5 m under complex background at the speed of 8 frames per second, regardless of lighting condition and target attitude. The proposed algorithm is very suitable for real-time visual measurement of space robot arm because of its robustness and small memory requirement.展开更多
文摘A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation.
基金supported by the National High Technology Research and Development Programme of China(2006AA04Z255)the 111 Project(B307018)
文摘This paper presents a new developed anthropomorphic robot dexterous hand: HIT/DLR Hand II. The hand is composed of an independent palm and five identical modular fingers, and each finger has three degree of freedom (DOFs) and four joints. All the actuators and electronics are integrated in the finger body and the palm. Owing to using a new actuator, drivers and a novel arrangement, both the length and width of the finger is about two third of its formner version. By using the wire coupling mecha- nism, the distal phalanx transmission ratio is kept exactly 1 : 1 in the whole movement range. The packing mechanism which is implemented directly in the finger body and palm not only reduces the size of whole hand but also make it more anthropomorphic. Additionally, the new designed force/torque and position sensors are integrated in the hand for increasing muhisensory capability. To evaluate the performances of the finger mechanism, the position and impedance control experiments are conducted.
文摘A reconfigurable modular robot was developed for a free-flying robot project. This robot was composed of 6 same modular joints and one gripper. In order to save space and cost for transporting it into the space, the robot should be folded overall and locked. A big central hole in the modular joint was designed for the placement of the cables and plugs in the robot arm, which prevented them from damage of high temperature, radiation in the space environment and the motion of the robot. Multiple sensors were integrated into the fully modular joint, such as joint torque sensor, joint position sensor and temperature sensors, which made the joint more intelligent. A zero gravity experimental system was developed to verify the functions of the robot under zero gravity environment.
基金supported by the National Basic Research Program of China (No. 2013CB733103)
文摘Cooperative target identification is the prerequisite for the relative position and orientation measurement between the space robot arm and the to-be-arrested object. We propose an on- orbit real-time robust algorithm for cooperative target identification in complex background using the features of circle and lines. It first extracts only the interested edges in the target image using an adaptive threshold and refines them to about single-pixel-width with improved non-maximum suppression. Adapting a novel tracking approach, edge segments changing smoothly in tangential directions are obtained. With a small amount of calculation, large numbers of invalid edges are removed. From the few remained edges, valid circular arcs are extracted and reassembled to obtain circles according to a reliable criterion. Finally, the target is identified if there are certain numbers of straight lines whose relative positions with the circle match the known target pattern. Experiments demonstrate that the proposed algorithm accurately identifies the cooperative target within the range of 0.3 1.5 m under complex background at the speed of 8 frames per second, regardless of lighting condition and target attitude. The proposed algorithm is very suitable for real-time visual measurement of space robot arm because of its robustness and small memory requirement.