强耦合条件下,复杂系统的有限元分析受到自由度的影响计算成本高昂。虽然模态叠加技术能减少耦合系统的自由度,但基于忽略不同子系统间高阶模态和低阶模态耦合作用的假设,若使用非耦合模态可能导致收敛性差。基于无阻尼声振耦合方程,本...强耦合条件下,复杂系统的有限元分析受到自由度的影响计算成本高昂。虽然模态叠加技术能减少耦合系统的自由度,但基于忽略不同子系统间高阶模态和低阶模态耦合作用的假设,若使用非耦合模态可能导致收敛性差。基于无阻尼声振耦合方程,本文采用分片传递函数法(Patch transfer function method,PTFM)将耦合面处理成一系列独立的分片,每个分片上所属单元节点值的平均值定义为分片传递函数,通过使用连续性关系计算耦合系统的分片传递函数。将耦合矩阵的求逆简化为源点到响应点的传递函数,可以快速计算耦合系统响应值。分别利用直接耦合法(Direct coupling method,DCM)和分片传递函数法计算板和空气声腔耦合模型,验证分片传递函数法的有效性,并讨论了分片传递函数的算法原理和计算误差。展开更多
文摘强耦合条件下,复杂系统的有限元分析受到自由度的影响计算成本高昂。虽然模态叠加技术能减少耦合系统的自由度,但基于忽略不同子系统间高阶模态和低阶模态耦合作用的假设,若使用非耦合模态可能导致收敛性差。基于无阻尼声振耦合方程,本文采用分片传递函数法(Patch transfer function method,PTFM)将耦合面处理成一系列独立的分片,每个分片上所属单元节点值的平均值定义为分片传递函数,通过使用连续性关系计算耦合系统的分片传递函数。将耦合矩阵的求逆简化为源点到响应点的传递函数,可以快速计算耦合系统响应值。分别利用直接耦合法(Direct coupling method,DCM)和分片传递函数法计算板和空气声腔耦合模型,验证分片传递函数法的有效性,并讨论了分片传递函数的算法原理和计算误差。