期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Highly efficient blue organic light-emitting diodes using various hole and electron confinement layers
1
作者 jin sung kang Ju-An Yoon +5 位作者 Seung Il Yoo jin Wook Kim Bo Mi Lee Hyeong Hwa Yu C.-B.Moon Woo Young Kim 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第3期72-75,共4页
In this Letter, blue phosphorescence organic light-emitting diodes (PHOLEDs) employ structures for electron and/or hole confinement; 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene is used as a hole confinement layer... In this Letter, blue phosphorescence organic light-emitting diodes (PHOLEDs) employ structures for electron and/or hole confinement; 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene is used as a hole confinement layer and tris-(phenylpyrazole)iridium [Ir(ppz)3] is utilized for an electron confinement layer (ECL). The electrical and optical properties of the fabricated blue PHOLEDs with various carrier-confinement structures are analyzed. Structures with a large ehergy offset between the carrier confinement and emitting layers enhance the charge-carrier balance in the emitting region, resulting from the effective carrier confinement. The maximum external quantum efficiency of the blue PHOLEDs with the double-ECLs is 24.02% at 1500 cd/m^2 and its luminous efficiency is 43.76 cd/A, which is 70.47% improved compared to the device without a carrier-confinement layer. 展开更多
关键词 BLUE Highly efficient blue organic light-emitting diodes using various hole and electron confinement layers OLEDs EML ECL
原文传递
White phosphorescent organic light-emitting diodes using double emissive layer with three dopants for color stability
2
作者 jin Wook Kim Nam Ho Kim +3 位作者 Ju-AnYoon Seung Il Yoo jin sung kang Woo Young Kim 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第10期100-103,共4页
We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B- EML),... We fabricate white phosphorescent organic light-emitting diodes (PHOLEDs) with three dopants and double emissive layer (EML) to achieve color stability. The white PHOLEDs use FIrpic dopant for blue EML (B- EML), and Ir(ppy)3:Ir(piq)3 dopants for green:red EML (GR-EML) with N,N'-dicarbazolyl-3, 5-benzene (mCP) as host material. Thicknesses of B-EML and GR-EML are adjusted to form a narrow recombination zone at two EML's interface and charge trapping happens in EML according to wide highest occupied molecular orbital and/or lowest unoccupied molecular orbital energy band gap of mCP and smaller energy band gap of dopants. The total thickness of both EMLs is fixed at 30 nm in the device structure of ITO (150 nm)/MoO3 (2 nm)/N,N'-diphenyl-N,N'-bis(1-naphthyl-phenyl)-(1,1″-biphenyl)-4, 4'-diamine (70 nm)/ meP:Firpic-8.0% (12 nm)/mCP:Ir(ppy)3-3.0%:Ir(piq)3-1.5% (18 nm)/2″,2',2"'-(1,3,5-benzinetriyl)-tris(1- phenyl-l-H-benzimidazole) (30 nm)/8-hydroxyquinolinolato-lithium (2 nm)/A1 (120 nm). White PHOLED shows 18.25 cd/A of luminous efficiency and white color coordinates of (0.358 and 0.378) at 5000 cd/m2 and color stability with slight CIExy change of (0.028 and 0.002) as increasing luminance from 1000 to 5000 cd/m^2. 展开更多
关键词 EML White phosphorescent organic light-emitting diodes using double emissive layer with three dopants for color stability ITO nm NPB
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部