The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion. Especially, single-atom catalysts(SACs) have attracted mo...The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion. Especially, single-atom catalysts(SACs) have attracted more attention owing to their high specific surface areas and abundant active centers. This review summarizes recent synthetic strategies to fabricate SACs with different metal loadings on various supports, and the structural influence of supports on metal loading. Then, the functions of SACs are illustrated on electronic structure and electrocatalysis;the isolated SACs with an unsaturated coordination environment generally accelerate the electrocatalytic process and promote the selectivity. The applications of SACs to some typical electrocatalytic reactions are also introduced in detail, as well as to electrochemical energy storage and conversion systems. Finally, the challenges and the perspectives of SACs are discussed for future exploration.展开更多
基金support by the National Natural Science Foundation of China (51702291 and 51902292)the China Postdoctoral Science Foundation (2020M682352,2020TQ0278,2020M672282 and 2019M662525)+1 种基金the State Key Laboratory of Powder Metallurgy,Central South University,ChangshaDevelopment Fund for Outstanding Young Teachers of Zhengzhou University。
文摘The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion. Especially, single-atom catalysts(SACs) have attracted more attention owing to their high specific surface areas and abundant active centers. This review summarizes recent synthetic strategies to fabricate SACs with different metal loadings on various supports, and the structural influence of supports on metal loading. Then, the functions of SACs are illustrated on electronic structure and electrocatalysis;the isolated SACs with an unsaturated coordination environment generally accelerate the electrocatalytic process and promote the selectivity. The applications of SACs to some typical electrocatalytic reactions are also introduced in detail, as well as to electrochemical energy storage and conversion systems. Finally, the challenges and the perspectives of SACs are discussed for future exploration.