In this paper, we study selfinjective Koszul algebras of finite complexity. We prove that the complexity is a nonnegative integer when it is finite; and that the category Yt of modules with complexity less or equal to...In this paper, we study selfinjective Koszul algebras of finite complexity. We prove that the complexity is a nonnegative integer when it is finite; and that the category Yt of modules with complexity less or equal to t, is resolving and coresolving. We show that for each 0 ≤ 1 ≤ m there exist a family of modules of complexity 1 parameterized by G(l, m), the Grassmannian of l-dimensional subspaces of an m-dimensional vector space V, for the exterior algebra of V. Using complexity, we also give a new approach to the representation theory of a tame symmetric algebra with vanishing radical cube over an algebraically closed field of characteristic 0, via skew group algebra of a finite subgroup of SL(2, C) over the exterior algebra of a 2-dimensional vector space.展开更多
We prove that the Koszul modules over an exterior algebra can be filtered by the cyclic Koszul modules. We also introduce the cyclic dimension vector as invariants for studying the Koszul modules over an exterior alge...We prove that the Koszul modules over an exterior algebra can be filtered by the cyclic Koszul modules. We also introduce the cyclic dimension vector as invariants for studying the Koszul modules over an exterior algebra.展开更多
In this paper, we prove that there is a natural equivalence between the category F1(x) of Koszul modules of complexity 1 with filtration of given cyclic modules as the factor modules of an exterior algebra A = ∧V o...In this paper, we prove that there is a natural equivalence between the category F1(x) of Koszul modules of complexity 1 with filtration of given cyclic modules as the factor modules of an exterior algebra A = ∧V of an m-dimensional vector space, and the category of the finite-dimensional locally nilpotent modules of the polynomial algebra of m - 1 variables.展开更多
基金Supported by NSFC #10671061SRFDP #200505042004the Cultivation Fund of the Key Scientific and Technical Innovation Project #21000115 of the Ministry of Education of China
文摘In this paper, we study selfinjective Koszul algebras of finite complexity. We prove that the complexity is a nonnegative integer when it is finite; and that the category Yt of modules with complexity less or equal to t, is resolving and coresolving. We show that for each 0 ≤ 1 ≤ m there exist a family of modules of complexity 1 parameterized by G(l, m), the Grassmannian of l-dimensional subspaces of an m-dimensional vector space V, for the exterior algebra of V. Using complexity, we also give a new approach to the representation theory of a tame symmetric algebra with vanishing radical cube over an algebraically closed field of characteristic 0, via skew group algebra of a finite subgroup of SL(2, C) over the exterior algebra of a 2-dimensional vector space.
基金NSFC#10371036,SRFDP#200505042004 the Cultivation Fund of the Key ScientificTechnical Innovation Project #21000115 of the Ministry of Education of China
文摘We prove that the Koszul modules over an exterior algebra can be filtered by the cyclic Koszul modules. We also introduce the cyclic dimension vector as invariants for studying the Koszul modules over an exterior algebra.
基金supported in part by NSFC #10371036Key Project #2A024 of the Provincial Ministry of Education of Hunan
文摘In this paper, we prove that there is a natural equivalence between the category F1(x) of Koszul modules of complexity 1 with filtration of given cyclic modules as the factor modules of an exterior algebra A = ∧V of an m-dimensional vector space, and the category of the finite-dimensional locally nilpotent modules of the polynomial algebra of m - 1 variables.