Revealing the oxidation behavior of superalloys is crucial for optimizing material properties and extending service life.This study investigated the oxidation behavior of superalloy GH4738 under stress states at 850℃...Revealing the oxidation behavior of superalloys is crucial for optimizing material properties and extending service life.This study investigated the oxidation behavior of superalloy GH4738 under stress states at 850℃.High-throughput specimens were fabricated to withstand different stresses at the same time.Isothermal oxidation s amples were analyzed using the mass gain method to obtain oxidation kinetic curves.The results show that the external stress below 200 MPa could improve the oxidation resistance of the GH4738.With tensile stress increasing,the oxide layer becomes thinner,denser and more complete,while internal oxidation decreases.The tensile stress alters the structure of the external oxide layer from a two-layer to a threelayer configuration.The Cr_(2)O_(3) oxide layer inhibits the outward diffusion of Ti,leading to Ti enrichment at the oxide-matrix interface and altering the oxidation mechanism of GH4738.展开更多
基金financially supported by the National Key R&D Program of China(No.2021YFB3700401)Shandong Provincial Natural Science Foundation for Youths(No.ZR2022QE234)+1 种基金Zhejiang Provincial Natural Science Foundation(No.LQ21E030002)the Youth Innovation team Project of Higher Education Institutions in Shandong Province(No.2022KJ272)。
文摘Revealing the oxidation behavior of superalloys is crucial for optimizing material properties and extending service life.This study investigated the oxidation behavior of superalloy GH4738 under stress states at 850℃.High-throughput specimens were fabricated to withstand different stresses at the same time.Isothermal oxidation s amples were analyzed using the mass gain method to obtain oxidation kinetic curves.The results show that the external stress below 200 MPa could improve the oxidation resistance of the GH4738.With tensile stress increasing,the oxide layer becomes thinner,denser and more complete,while internal oxidation decreases.The tensile stress alters the structure of the external oxide layer from a two-layer to a threelayer configuration.The Cr_(2)O_(3) oxide layer inhibits the outward diffusion of Ti,leading to Ti enrichment at the oxide-matrix interface and altering the oxidation mechanism of GH4738.