期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Prognostic prediction models for postoperative patients with stageⅠtoⅢcolorectal cancer based on machine learning
1
作者 Xiao-Lin Ji Shuo xu +5 位作者 Xiao-Yu Li jin-huan xu Rong-Shuang Han Ying-Jie Guo Li-Ping Duan Zi-Bin Tian 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第12期4597-4613,共17页
BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to dev... BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to develop and validate models for predicting survival.In addition,important variables can be screened and different applications can be provided that could serve as vital references when making clinical decisions and potentially improving patient outcomes in clinical settings.AIM To construct prognostic prediction models and screen important variables for patients with stageⅠtoⅢCRC.METHODS More than 1000 postoperative CRC patients were grouped according to survival time(with cutoff values of 3 years and 5 years)and assigned to training and testing cohorts(7:3).For each 3-category survival time,predictions were made by 4 ML algorithms(all-variable and important variable-only datasets),each of which was validated via 5-fold cross-validation and bootstrap validation.Important variables were screened with multivariable regression methods.Model performance was evaluated and compared before and after variable screening with the area under the curve(AUC).SHapley Additive exPlanations(SHAP)further demonstrated the impact of important variables on model decision-making.Nomograms were constructed for practical model application.RESULTS Our ML models performed well;the model performance before and after important parameter identification was consistent,and variable screening was effective.The highest pre-and postscreening model AUCs 95%confidence intervals in the testing set were 0.87(0.81-0.92)and 0.89(0.84-0.93)for overall survival,0.75(0.69-0.82)and 0.73(0.64-0.81)for disease-free survival,0.95(0.88-1.00)and 0.88(0.75-0.97)for recurrence-free survival,and 0.76(0.47-0.95)and 0.80(0.53-0.94)for distant metastasis-free survival.Repeated cross-validation and bootstrap validation were performed in both the training and testing datasets.The SHAP values of the important variables were consistent with the clinicopathological characteristics of patients with tumors.The nomograms were created.CONCLUSION We constructed a comprehensive,high-accuracy,important variable-based ML architecture for predicting the 3-category survival times.This architecture could serve as a vital reference for managing CRC patients. 展开更多
关键词 Colorectal cancer Machine learning Prognostic prediction model Survival times Important variables
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部