Based on the microscopic nonlocal optical response theory, the resonant radiation force exerted on a semiconductorcoupled quantum well nanostructure(CQWN), induced by the nonlocal interaction between lasers and electr...Based on the microscopic nonlocal optical response theory, the resonant radiation force exerted on a semiconductorcoupled quantum well nanostructure(CQWN), induced by the nonlocal interaction between lasers and electrons in conduction bands, is investigated for two different polarized states. The numerical results show that the spatial nonlocality of optical response can cause a radiation shift(blue-shift) for the spectrum of the resonant radiation force, which is dependent on the CQWN width ratio, the barrier height, and polarized states sensitively. It is also confirmed that the resonant radiation force is steerable by the incident and polarized directions of incident light. This work may provide an advantageous method for detecting internal quantum properties of nanostructures, and open novel and raising possibilities for optical manipulation of nano-objects using laser-induced radiation force.展开更多
基金Project supported by the Natural Science Foundation of Guangdong Province,China(Grant Nos.2016A030313439 and 2018A030313480)GDUPS(2017)+1 种基金the Key Program of the Natural Science Foundation of Guangdong Province,China(Grant No.2017B030311003)the Science and Technology Program of Guangzhou City,China(Grant No.201707010403)
文摘Based on the microscopic nonlocal optical response theory, the resonant radiation force exerted on a semiconductorcoupled quantum well nanostructure(CQWN), induced by the nonlocal interaction between lasers and electrons in conduction bands, is investigated for two different polarized states. The numerical results show that the spatial nonlocality of optical response can cause a radiation shift(blue-shift) for the spectrum of the resonant radiation force, which is dependent on the CQWN width ratio, the barrier height, and polarized states sensitively. It is also confirmed that the resonant radiation force is steerable by the incident and polarized directions of incident light. This work may provide an advantageous method for detecting internal quantum properties of nanostructures, and open novel and raising possibilities for optical manipulation of nano-objects using laser-induced radiation force.