BACKGROUND Treatment-refractory schizophrenia(TRS),accounting for approximately 30%of all schizophrenia cases,has poor treatment response and prognosis despite treatment with antipsychotic drugs.AIM To analyze the the...BACKGROUND Treatment-refractory schizophrenia(TRS),accounting for approximately 30%of all schizophrenia cases,has poor treatment response and prognosis despite treatment with antipsychotic drugs.AIM To analyze the therapeutic effectiveness of repetitive transcranial magnetic stimulation(rTMS)combined with olanzapine(OLZ)and amisulpride(AMI)for TRS and its influence on the patient’s cognitive function.METHODS This study enrolled 114 TRS patients who received treatment at the First Affiliated Hospital of Zhengzhou University between July 2019 and July 2022.In addition to the basic OLZ+AMI therapy,54 cases of the control group(Con group)received modified electroconvulsive therapy,while 60 cases of the research group(Res group)received rTMS.Data on therapeutic effectiveness,safety(incidence of drowsiness,headache,nausea,vomiting,or memory impairment),Positive and Negative Symptom Scale,Montreal Cognitive Assessment Scale,and Schizophrenia Quality of Life Scale were collected from both cohorts for comparative analyses.RESULTS The Res group elicited a higher overall response rate and better safety profile when compared with the Con group.Additionally,a significant reduction was observed in the post-treatment Positive and Negative Symptom Scale and Schizophrenia Quality of Life Scale scores of the Res group,presenting lower scores than those of the Con group.Furthermore,a significant increase in the Montreal Cognitive Assessment Scale score was reported in the Res group,with higher scores than those of the Con group.CONCLUSION The treatment of TRS with rTMS and OLZ+AMI is effective and safe.Moreover,it can alleviate the patients’mental symptoms,improve their cognitive function and quality of life,and has a high clinical application value.展开更多
Hybrid aluminum matrix composite powders reinforced with bimodal-sized Al2O3 particles were synthesized by mechanical milling.Two different approaches were investigated for the addition of submicron-and nano-sized Al2...Hybrid aluminum matrix composite powders reinforced with bimodal-sized Al2O3 particles were synthesized by mechanical milling.Two different approaches were investigated for the addition of submicron-and nano-sized Al2O3 particles to the aluminum powders,It was observed that the simultaneous addition of bimodal-sized Al2O3 particles to the aluminum powders resulted in an equiaxed morphology of the composite powders and the average particle size stabilized after 5 h of milling,indicating that the presence of bimodal-sized particles has greater effect on accelerating milling process as compared to nano-sized particles;the grain size of the aluminum matrix in composite powders was reduced to under 40 nm,approximate to the value obtained in the separate addition case,while a lower rate of refining was observed due to hindrance of submicron-sized particles on the interactions between nano-sized particles and the aluminum matrix.展开更多
Magnesium matrix composites reinforced with AlN particles were fabricated by the powder metallurgy technique. The evolution of lattice constants and solid solubility levels of Al in α-Mg and the microstructure of Mg-...Magnesium matrix composites reinforced with AlN particles were fabricated by the powder metallurgy technique. The evolution of lattice constants and solid solubility levels of Al in α-Mg and the microstructure of Mg-Al/AlN composites were investigated in the present study. The results showed that the solid solubility of Al in α-Mg reached a relatively high level by the P/M process with a long time of milling. X-ray diffraction showed that the peaks of Mg phase clearly shifted to higher angles. The lattice constants and cell volume decreased significantly compared with those of standard Mg due to a significant amount of Al incorporated into α-Mg in the form of substitutional solid solution. The degree of lattice deformation decreased at a low sintering temperature and increased at higher sintering temperatures due to the presence of AlN. Microstructural characterization of the composites revealed a necklace distribution of AlN particles in the Mg matrix. Heat treatment led to precipitation of Mg17Al12 from the supersaturated α-Mg solid solution. The pre- cipitate exhibited granular and lath-shaped morphologies in Mg matrix and ftocculent precipitation around AlN particles.展开更多
文摘BACKGROUND Treatment-refractory schizophrenia(TRS),accounting for approximately 30%of all schizophrenia cases,has poor treatment response and prognosis despite treatment with antipsychotic drugs.AIM To analyze the therapeutic effectiveness of repetitive transcranial magnetic stimulation(rTMS)combined with olanzapine(OLZ)and amisulpride(AMI)for TRS and its influence on the patient’s cognitive function.METHODS This study enrolled 114 TRS patients who received treatment at the First Affiliated Hospital of Zhengzhou University between July 2019 and July 2022.In addition to the basic OLZ+AMI therapy,54 cases of the control group(Con group)received modified electroconvulsive therapy,while 60 cases of the research group(Res group)received rTMS.Data on therapeutic effectiveness,safety(incidence of drowsiness,headache,nausea,vomiting,or memory impairment),Positive and Negative Symptom Scale,Montreal Cognitive Assessment Scale,and Schizophrenia Quality of Life Scale were collected from both cohorts for comparative analyses.RESULTS The Res group elicited a higher overall response rate and better safety profile when compared with the Con group.Additionally,a significant reduction was observed in the post-treatment Positive and Negative Symptom Scale and Schizophrenia Quality of Life Scale scores of the Res group,presenting lower scores than those of the Con group.Furthermore,a significant increase in the Montreal Cognitive Assessment Scale score was reported in the Res group,with higher scores than those of the Con group.CONCLUSION The treatment of TRS with rTMS and OLZ+AMI is effective and safe.Moreover,it can alleviate the patients’mental symptoms,improve their cognitive function and quality of life,and has a high clinical application value.
基金the financial support from the State Key Laboratory of Traction Power(Grant No.2015TPL_Z01)the State Key Laboratory of Solidification Processing(Grant Nos.82-TZ-2013 and SKLSP201609)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2682017CX090)the‘‘111’’Project(B08040)
文摘Hybrid aluminum matrix composite powders reinforced with bimodal-sized Al2O3 particles were synthesized by mechanical milling.Two different approaches were investigated for the addition of submicron-and nano-sized Al2O3 particles to the aluminum powders,It was observed that the simultaneous addition of bimodal-sized Al2O3 particles to the aluminum powders resulted in an equiaxed morphology of the composite powders and the average particle size stabilized after 5 h of milling,indicating that the presence of bimodal-sized particles has greater effect on accelerating milling process as compared to nano-sized particles;the grain size of the aluminum matrix in composite powders was reduced to under 40 nm,approximate to the value obtained in the separate addition case,while a lower rate of refining was observed due to hindrance of submicron-sized particles on the interactions between nano-sized particles and the aluminum matrix.
文摘Magnesium matrix composites reinforced with AlN particles were fabricated by the powder metallurgy technique. The evolution of lattice constants and solid solubility levels of Al in α-Mg and the microstructure of Mg-Al/AlN composites were investigated in the present study. The results showed that the solid solubility of Al in α-Mg reached a relatively high level by the P/M process with a long time of milling. X-ray diffraction showed that the peaks of Mg phase clearly shifted to higher angles. The lattice constants and cell volume decreased significantly compared with those of standard Mg due to a significant amount of Al incorporated into α-Mg in the form of substitutional solid solution. The degree of lattice deformation decreased at a low sintering temperature and increased at higher sintering temperatures due to the presence of AlN. Microstructural characterization of the composites revealed a necklace distribution of AlN particles in the Mg matrix. Heat treatment led to precipitation of Mg17Al12 from the supersaturated α-Mg solid solution. The pre- cipitate exhibited granular and lath-shaped morphologies in Mg matrix and ftocculent precipitation around AlN particles.