Halide perovskite single crystals(SCs)have attracted much attention for their application in high-performance x-ray detectors owing to their desirable properties,including low defect density,high mobility–lifetime pr...Halide perovskite single crystals(SCs)have attracted much attention for their application in high-performance x-ray detectors owing to their desirable properties,including low defect density,high mobility–lifetime product(μτ),and long carrier diffusion length.However,suppressing the inherent defects in perovskites and overcoming the ion migration primarily caused by these defects remains a challenge.This study proposes a facile process for dipping Cs0.05FA0.9MA0.05PbI3 SCs synthesized by a solution-based inverse temperature crystallization method into a 2-phenylethylammonium iodide(PEAI)solution to reduce the number of defects,inhibit ion migration,and increase x-ray sensitivity.Compared to conventional spin coating,this simple dipping process forms a two-dimensional PEA2PbI4 layer on all SC surfaces without further treatment,effectively passivating all surfaces of the inherently defective SCs and minimizing ion migration.As a result,the PEAI-treated perovskite SC-based x-ray detector achieves a record x-ray sensitivity of 1.3×10^(5)μC Gyair^(-1) cm^(-2) with a bias voltage of 30 V at realistic clinical dose rates of 1–5 mGy s^(-1)(peak potential of 110 kVp),which is 6 times more sensitive than an untreated SC-based detector and 3 orders of magnitude more sensitive than a commercialα-Se-based detector.Furthermore,the PEAI-treatedperovskite SC-based x-ray detector exhibits a low detection limit(73 nGy s^(-1)),improved x-ray response,and clear x-ray images by a scanning method,highlighting the effectiveness of the PEAI dipping approach for fabricating next-generation x-ray detectors.展开更多
Interstitial doping has been considered as an effective strategy to passivate and immobilize the ionic defects of metal halide perovskites to enhance performance and stability of perovskite solar cells.However,high do...Interstitial doping has been considered as an effective strategy to passivate and immobilize the ionic defects of metal halide perovskites to enhance performance and stability of perovskite solar cells.However,high dopant dosage causes lattice distortion which results in micro-strain and subsequent phase destabilization.This highlight discusses the latest report regarding optimal interstitial doping with a multivalent alkali metal cation for perovskites and awaiting issues associated with it.展开更多
The fundamentals,promise and challenges of metal halide quasi-two-dimensional(quasi-2D)perovskites for a next generation emitter in light emitting diode devices are systematically reviewed.
基金Agency for Defense Development,Grant/Award Number:UI220006TDDefense Acquisition Program Administration(DAPA),Grant/Award Number:912765601Korea Institute of Energy Technology Evaluation and Planning,Grant/Award Number:RS-2023-00237035。
文摘Halide perovskite single crystals(SCs)have attracted much attention for their application in high-performance x-ray detectors owing to their desirable properties,including low defect density,high mobility–lifetime product(μτ),and long carrier diffusion length.However,suppressing the inherent defects in perovskites and overcoming the ion migration primarily caused by these defects remains a challenge.This study proposes a facile process for dipping Cs0.05FA0.9MA0.05PbI3 SCs synthesized by a solution-based inverse temperature crystallization method into a 2-phenylethylammonium iodide(PEAI)solution to reduce the number of defects,inhibit ion migration,and increase x-ray sensitivity.Compared to conventional spin coating,this simple dipping process forms a two-dimensional PEA2PbI4 layer on all SC surfaces without further treatment,effectively passivating all surfaces of the inherently defective SCs and minimizing ion migration.As a result,the PEAI-treated perovskite SC-based x-ray detector achieves a record x-ray sensitivity of 1.3×10^(5)μC Gyair^(-1) cm^(-2) with a bias voltage of 30 V at realistic clinical dose rates of 1–5 mGy s^(-1)(peak potential of 110 kVp),which is 6 times more sensitive than an untreated SC-based detector and 3 orders of magnitude more sensitive than a commercialα-Se-based detector.Furthermore,the PEAI-treatedperovskite SC-based x-ray detector exhibits a low detection limit(73 nGy s^(-1)),improved x-ray response,and clear x-ray images by a scanning method,highlighting the effectiveness of the PEAI dipping approach for fabricating next-generation x-ray detectors.
基金This research was supported by the Challengeable Future Defense Technology Research and Development Program through the Agency for Defense Development(ADD),funded by the Defense Acquisition Program Administration(DAPA)in 2022(No.UI220006TD).
文摘Interstitial doping has been considered as an effective strategy to passivate and immobilize the ionic defects of metal halide perovskites to enhance performance and stability of perovskite solar cells.However,high dopant dosage causes lattice distortion which results in micro-strain and subsequent phase destabilization.This highlight discusses the latest report regarding optimal interstitial doping with a multivalent alkali metal cation for perovskites and awaiting issues associated with it.
文摘The fundamentals,promise and challenges of metal halide quasi-two-dimensional(quasi-2D)perovskites for a next generation emitter in light emitting diode devices are systematically reviewed.