Free volume is an extremely important intrinsic defect in polymers. Structurally, free volume is the randomly distributed holes in the polymer molecular chain segments. In proton exchange membrane fuel cells, free vol...Free volume is an extremely important intrinsic defect in polymers. Structurally, free volume is the randomly distributed holes in the polymer molecular chain segments. In proton exchange membrane fuel cells, free volume is also the space needed for the directional conduction of protons. Irradiation by α particles to grafting sulfonated poly(vinylidene fluoride)(PVDF) is one of the methods to produce proton exchange membrane with good proton channel rate. Positron annihilation lifetime spectroscopy was used to study the free volume size at different absorbed dose levels from 0.13 MGy to 0.65 MGy. Measurement method of positron annihilation lifetime spectroscopy for PVDF based on ^(44) Ti positron source was developed. For low dose irradiation at 0.26 MGy, a decrease in free volume and practically unchanged crystallinity were observed. Further increase of absorbed dose range from 0.26 MGy to 0.39 MGy led to an increasing crystallinity with the same free volume level. For the absorbed dose from 0.39 MGy to 0.65 MGy, crystallinity was decreased but free volume remained almost constant.展开更多
文摘Free volume is an extremely important intrinsic defect in polymers. Structurally, free volume is the randomly distributed holes in the polymer molecular chain segments. In proton exchange membrane fuel cells, free volume is also the space needed for the directional conduction of protons. Irradiation by α particles to grafting sulfonated poly(vinylidene fluoride)(PVDF) is one of the methods to produce proton exchange membrane with good proton channel rate. Positron annihilation lifetime spectroscopy was used to study the free volume size at different absorbed dose levels from 0.13 MGy to 0.65 MGy. Measurement method of positron annihilation lifetime spectroscopy for PVDF based on ^(44) Ti positron source was developed. For low dose irradiation at 0.26 MGy, a decrease in free volume and practically unchanged crystallinity were observed. Further increase of absorbed dose range from 0.26 MGy to 0.39 MGy led to an increasing crystallinity with the same free volume level. For the absorbed dose from 0.39 MGy to 0.65 MGy, crystallinity was decreased but free volume remained almost constant.