期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Design and feasibility analysis of a new completion monitoring technical scheme for natural gas hydrate production tests
1
作者 Qiu-ping Lu Yan-jiang Yu +8 位作者 Xie Wen-wei jin-qiang liang Jing-an Lu Ben-chong Xu Hao-xian Shi Hao-yu Yu Ru-lei Qin Xing-chen Li Bin Li 《China Geology》 CAS CSCD 2023年第3期466-475,共10页
As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change ... As a prerequisite and a guarantee for safe and efficient natural gas hydrates(NGHs)exploitation,it is imperative to effectively determine the mechanical properties of NGHs reservoirs and clarify the law of the change in the mechanical properties with the dissociation of NGHs during NGHs production tests by depressurization.Based on the development of Japan’s two offshore NGHs production tests in vertical wells,this study innovatively proposed a new subsea communication technology-accurate directional connection using a wet-mate connector.This helps to overcome the technical barrier to the communication between the upper and lower completion of offshore wells.Using this new communication technology,this study explored and designed a mechanical monitoring scheme for lower completion(sand screens).This scheme can be used to monitor the tensile stress and radial compressive stress of sand screens caused by NGHs reservoirs in real time,thus promoting the technical development for the rapid assessment and real-time feedback of the in-situ mechanical response of NGHs reservoirs during offshore NGHs production tests by depressurization. 展开更多
关键词 Natural gas hydrates Depressurization test Wet-mate Directional connection Lower completion monitoring In-situ mechanical response of reservoirs Oil-gas exploration engineering The South China Sea
下载PDF
Coexistence of natural gas hydrate,free gas and water in the gas hydrate system in the Shenhu Area,South China Sea 被引量:21
2
作者 Xu-wen Qin Jing-an Lu +6 位作者 Hai-long Lu Hai-jun Qiu jin-qiang liang Dong-ju Kang Lin-sen Zhan Hong-feng Lu Zeng-gui Kuang 《China Geology》 2020年第2期210-220,共11页
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide cover... Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects. 展开更多
关键词 Mixing layer Gas hydrate NMR logging Sonic logging Core analysis Oil gas exploration engineering Shenhu Area South China Sea China
下载PDF
The second natural gas hydrate production test in the South China Sea 被引量:24
3
作者 Jian-liang Ye Xu-wen Qin +24 位作者 Wen-wei Xie Hai-long Lu Bao-jin Ma Hai-jun Qiu jin-qiang liang Jing-an Lu Zeng-gui Kuang Cheng Lu Qian-yong liang Shi-peng Wei Yan-jiang Yu Chunsheng Liu Bin Li Kai-xiang Shen Hao-xian Shi Qiu-ping Lu Jing Li Bei-bei Kou Gang Song Bo Li He-en Zhang Hong-feng Lu Chao Ma Yi-fei Dong Hang Bian 《China Geology》 2020年第2期197-209,共13页
Clayey silt reservoirs bearing natural gas hydrates(NGH)are considered to be the hydrate-bearing reservoirs that boast the highest reserves but tend to be the most difficult to exploit.They are proved to be exploitabl... Clayey silt reservoirs bearing natural gas hydrates(NGH)are considered to be the hydrate-bearing reservoirs that boast the highest reserves but tend to be the most difficult to exploit.They are proved to be exploitable by the first NGH production test conducted in the South China Sea in 2017.Based on the understanding of the first production test,the China Geological Survey determined the optimal target NGH reservoirs for production test and conducted a detailed assessment,numerical and experimental simulation,and onshore testing of the reservoirs.After that,it conducted the second offshore NGH production test in 1225 m deep Shenhu Area,South China Sea(also referred to as the second production test)from October 2019 to April 2020.During the second production test,a series of technical challenges of drilling horizontal wells in shallow soft strata in deep sea were met,including wellhead stability,directional drilling of a horizontal well,reservoir stimulation and sand control,and accurate depressurization.As a result,30 days of continuous gas production was achieved,with a cumulative gas production of 86.14×104 m3.Thus,the average daily gas production is 2.87×10^4 m^3,which is 5.57 times as much as that obtained in the first production test.Therefore,both the cumulative gas production and the daily gas production were highly improved compared to the first production test.As indicated by the monitoring results of the second production test,there was no anomaly in methane content in the seafloor,seawater,and atmosphere throughout the whole production test.This successful production test further indicates that safe and effective NGH exploitation is feasible in clayey silt NGH reservoirs.The industrialization of hydrates consists of five stages in general,namely theoretical research and simulation experiments,exploratory production test,experimental production test,productive production test,and commercial production.The second production test serves as an important step from the exploratory production test to experimental production test. 展开更多
关键词 Natural gas hydrates Second production test Horizontal well Reservoir stimulation Environmental impact NGH exploration trial engineering South China Sea
下载PDF
Numerical studies of gas hydrate evolution time in Shenhu area in the northern South China Sea 被引量:6
4
作者 Yun-xin Fang Jing-an Lu +3 位作者 jin-qiang liang Zeng-gui Kuang Yun-cheng Cao Duo-fu Chen 《China Geology》 2019年第1期49-55,共7页
Although the Shenhu sea area has been a topic and focus of intense research for the exploration and study of marine gas hydrate in China, the mechanism of gas hydrate accumulation in this region remains controversial.... Although the Shenhu sea area has been a topic and focus of intense research for the exploration and study of marine gas hydrate in China, the mechanism of gas hydrate accumulation in this region remains controversial. The formation rate and evolution time of gas hydrate are the critical basis for studying the gas hydrate formation of the Shenhu sea area. In this paper, based on the positive anomaly characteristics of chloride concentration that measured in the GMGS3-W19 drilling site is higher than the seawater value, we numerically simulated the gas hydrate formation time of GMGS3-W19 site. The simulation results show that the gas hydrate formation rate positively correlates with the chloride concentration when the hydrate reaches the measured saturation. The formation time of gas hydrate in the GMGS3-W19 site is approximately 30 ka. Moreover, the measured chloride concentration is consistent with the in-situ chloride concentration, indicating that the formation rate of gas hydrate at the GMGS3-W19 site is very fast with a relatively short evolution time. 展开更多
关键词 Shenhu SOUTH China SEA Numerical simulation Formation rate
下载PDF
A fast identification method based on the typical geophysical differences between submarine shallow carbonates and hydrate bearing sediments in the northern South China Se a 被引量:5
5
作者 jin-qiang liang Wei Deng +6 位作者 Jing-an Lu Zeng-gui Kuang Yu-lin He Wei Zhang Yue-hua Gong Jin liang Miao-miao Meng 《China Geology》 2020年第1期16-27,共12页
Bottom simulating reflector(BSR)has been recognized as one of the indicators of gas hydrates.However,BSR and hydrate are not one-to-one correspondence.In the Xisha area of South China Sea(SCS),carbonate rocks wildly d... Bottom simulating reflector(BSR)has been recognized as one of the indicators of gas hydrates.However,BSR and hydrate are not one-to-one correspondence.In the Xisha area of South China Sea(SCS),carbonate rocks wildly develop,which continuously distribute parallel to the seafloor with high amplitude on seismic sections,exhibiting reflections similar to BSRs in the Shenhu area nearby.This phenomenon causes some interference to hydrates identification.In this paper,the authors discussed the typical geophysical differences between carbonate rocks and hydrates,indicating that the main difference exists in relationship between porosity and velocity,causing different amplitude versus offset(AVO)characters.Then the authors proposed a new model assuming that the carbonates form the matrix and the hydrate fill the pore as a part of the matrix.The key modeling parameters have been optimized constrained by Pvelocities and S-velocities simultaneously,and the model works well both for carbonate rock and gas hydrate bearing sediments.For quantitative identification,the authors calculated the velocities when carbonates and hydrates form the matrix together in different proportions.Then they proposed a carbonate and hydrate identification template(CHIT),in which the possible hydrate saturation(PHS)and possible carbonate content(PCC)can be both scaled out for a group of sample composed by P-velocity and S-velocity.If PHS is far larger than PCC,it is more likely to be a hydrate sample because carbonates and hydrates do not coexist normally.The real data application shows that the template can effectively distinguish between hydrates and carbonate rocks,consequently reducing the risk of hydrate exploration. 展开更多
关键词 Gas hydrate Carbonate Rock physics Fast identification South China Sea Gas hydrate exploration engineering
下载PDF
Assessment of natural gas hydrate reservoirs at Site GMGS3-W19 in the Shenhu area,South China Sea based on various well logs 被引量:1
6
作者 Dong-ju Kang Ying-feng Xie +4 位作者 Jing-an Lu Tong Wang jin-qiang liang Hong-fei Lai Yun-xin Fang 《China Geology》 CAS 2022年第3期383-392,共10页
To obtain the characteristics of the gas hydrate reservoirs at GMGS3-W19,extensive geophysical logging data and cores were analyzed to assess the reservoir properties.Sediment porosities were estimated from density,ne... To obtain the characteristics of the gas hydrate reservoirs at GMGS3-W19,extensive geophysical logging data and cores were analyzed to assess the reservoir properties.Sediment porosities were estimated from density,neutron,and nuclear magnetic resonance(NMR)logs.Both the resistivity and NMR logs were used to calculate gas hydrate saturations,the Simandoux model was employed to eliminate the effects of high clay content determined based on the ECS and core data.The density porosity was closely in agreement with the core-derived porosity,and the neutron porosity was higher while the NMR porosity was lower than the density porosity of sediments without hydrates.The resistivity log has higher vertical resolution than the NMR log and thus is more favorable for assessing gas hydrate saturation with strong heterogeneity.For the gas hydrate reservoirs at GMGS3-W19,the porosity,gas hydrate saturation and free gas saturation was 52.7%,42.7%and 10%,on average,respectively.The various logs provide different methods for the comprehensive evaluation of hydrate reservoir,which supports the selection of candidate site for gas hydrate production testing. 展开更多
关键词 Natural gas hydrates(NGHs) Low gamma Reservoir properties SATURATION NMR Marine hydrates trial exploration engineering Shenhu area South China Sea
下载PDF
Migration and accumulation characteristics of natural gas hydrates in the uplifts and their slope zones in the Qiongdongnan Basin,China 被引量:1
7
作者 Yu-lin He jin-qiang liang +5 位作者 Zeng-gui Kuang Wei Deng Jin-feng Ren Hong-fei Lai Miao-miao Meng Wei Zhang 《China Geology》 2022年第2期234-250,共17页
Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteri... Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration. 展开更多
关键词 Gas chimney OVERPRESSURE Migration characteristics of gas hydrates Accumulation characteristics of gas hydrates Oil and gas exploration engineering NGHs exploration trial engineering Uplifts and slope zones Qiongdongnan Basin China
下载PDF
Dissociation of gas hydrates by hydrocarbon migration and accumulation-derived slope failures:An example from the South China Sea
8
作者 Zhi-Feng Wan Wei Zhang +7 位作者 Chong Ma jin-qiang liang Ang Li Da-Jiang Meng Wei Huang Cheng-Zhi Yang Jin-Feng Zhang Yue-Feng Sun 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期295-310,共16页
The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear.High-resolution seismic data and gas hydrate drilling data collected from the Shenhu... The mechanism of slope failure associated with overpressure that is caused by hydrocarbon migration and accumulation remains unclear.High-resolution seismic data and gas hydrate drilling data collected from the Shenhu gas hydrate field(site SH5)offer a valuable opportunity to study the relations between submarine slope failure and hydrocarbon accumulation and flow that is associated with a~2 kmdiameter gas chimney developed beneath site SH5 where none gas hydrates had been recovered by drilling and sampling despite the presence of distinct bottom simulating reflectors(BSRs)and favorable gas hydrate indication.The mechanism of submarine slope failure resulted from buoyancy extrusion and seepage-derived deformation which were caused by overpressure from a~1100 m-high gas column in a gas chimney was studied via numerical simulation.The~9.55 MPa overpressure caused by hydrocarbons that migrated through the gas chimney and then accumulated beneath subsurface gas hydratebearing impermeable sediments.This may have resulted in a submarine slope failure,which disequilibrated the gas hydrate-bearing zone and completely decomposed the gas hydrate once precipitated at site SH5.Before the gas hydrate decomposition,the largely impermeable sediments overlying the gas chimney may have undergone a major upward deformation due to the buoyancy extrusion of the overpressure in the gas chimney,and slope failure was initiated from plastic strain of the sediments and reduced internal strength.Slope failure subsequently resulted in partial gas hydrate decomposition and sediment permeability increase.The pressurized gas in the gas chimney may have diffused into the overlying sediments controlled by seepage-derived deformation,causing an effective stress reduction at the base of the sediments and significant plastic deformation.This may have formed a new cycle of submarine slope failure and finally the total gas hydrate dissociation.The modeling results of buoyancy extrusion and seepage-derived deformation of the overpressure in the gas chimney would provide new understanding in the development of submarine slope failure and the link between slope failure and gas hydrate accumulation and dissociation. 展开更多
关键词 Natural gas hydrate Submarine slope failure Gas chimney Buoyancy extrusion Seepage-derived deformation Shenhu area Northern South China Sea
下载PDF
Velocity-porosity relationships in hydrate-bearing sediments measured from pressure cores,Shenhu Area,South China Sea
9
作者 Lin Lin Jun Cao +4 位作者 Jin Qian Jiu-jing Shang Wei Zhang Jin-gan Lu jin-qiang liang 《China Geology》 2022年第2期267-275,共9页
Evaluating velocity-porosity relationships of hydrate-bearing marine sediments is essential for characterizing natural gas hydrates below seafloor as either a potential energy resource or geohazards risks.Four sites h... Evaluating velocity-porosity relationships of hydrate-bearing marine sediments is essential for characterizing natural gas hydrates below seafloor as either a potential energy resource or geohazards risks.Four sites had cored using pressure and non-pressure methods during the gas hydrates drilling project(GMGS4)expedition at Shenhu Area,north slope of the South China Sea.Sediments were cored above,below,and through the gas-hydrate-bearing zone guided with logging-while-drilling analysis results.Gamma density and P-wave velocity were measured in each pressure core before subsampling.Methane hydrates volumes in total 62 samples were calculated from the moles of excess methane collected during depressurization experiments.The concentration of methane hydrates ranged from 0.3%to 32.3%.The concentrations of pore fluid(25.44%to 68.82%)and sediments(23.63%to 54.28%)were calculated from the gamma density.The regression models of P-wave velocity were derived and compared with a global empirical equation derived from shallow,unconsolidated sediments data.The results were close to the global trend when the fluid concentration is larger than the critical porosity.It is concluded that the dominant factor of P-wave velocity in hydrate-bearing marine sediments is the presence of the hydrate.Methane hydrates can reduce the fluid concentration by discharging the pore fluid and occupying the original pore space of sediments after its formation. 展开更多
关键词 Natural gas hydrates(NGHs) Methane hydrate P-wave velocity POROSITY Saturation Pressure-core NGHs exploration trial engineering Oil and gas exploration engineering Shenhu Area South China Sea
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部