Constructing binary heterojunctions is an important strategy to improve the photocatalytic performance of graphitic carbon nitride(g‐C3N4).In this paper,a novel g‐C3N4 nanosheet‐based composite was constructed via ...Constructing binary heterojunctions is an important strategy to improve the photocatalytic performance of graphitic carbon nitride(g‐C3N4).In this paper,a novel g‐C3N4 nanosheet‐based composite was constructed via in situ growth of bismuth oxyiodide(BiOI)nanoplates on the surface of g‐C3N4 nanosheets.The crystal phase,microstructure,optical absorption and textural properties of the synthesized photocatalysts were analyzed by X‐ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),ultraviolet‐visible(UV‐vis)diffuse reflectance spectroscopy(DRS),and nitrogen adsorption‐desorption isotherm measurements.The BiOI/g‐C3N4 nanosheet composite showed high activity and recyclability for the photodegradation of the target pollutant rhodamine B(RhB).The conversion of RhB(20 mg L?1)by the photocatalyst was nearly 100%after 50 min under visible‐light irradiation.The high photoactivity of the BiOI/g‐C3N4 nanosheet composite can be attributed to the enhanced visible‐light absorption of the g‐C3N4 nanosheets sensitized by BiOI nanoplates as well as the high charge separation efficiency obtained by the establishment of an internal electric field between the n‐type g‐C3N4 and p‐type BiOI.Based on the characterization and experimental results,a double‐transfer mechanism of the photoinduced electrons in the BiOI/g‐C3N4 nanosheet composite was proposed to explain its activity.This work represents a new strategy to understand and realize the design and synthesis of g‐C3N4 nanosheet‐based heterojunctions that display highly efficient charge separation and transfer.展开更多
Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocataly...Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocatalyst that demonstrates both photoelectronic and photothermal conversion capabilities have drawn much attention recently.Here,we propose a novel synergistic full-spectrum photo-thermo-catalysis technique for high-efficient H_(2) production by solar-driven methanol steam reforming(MSR),along with the Pt-Cu Oxphoto-thermo-catalyst featuring Pt-Cu/Cu_(2)O/CuO heterojunctions by Pt-mediated in-situ photoreduction of Cu O.The results show that the H_(2) production performance rises superlinearly with increasing light intensity.The optimal H_(2) production rate of 1.6 mol g^(-1) h^(-1) with the corresponding solar-to-hydrogen conversion efficiency of 7%and the CO selectivity of 5%is achieved under 15×sun full-spectrum irradiance(1×sun=1 k W m^(-2))at 180°C,which is much more efficient than the previously-reported Cu-based thermo-catalysts for MSR normally operating at 250~350°C.These attractive performances result from the optimized reaction kinetics in terms of intensified intermediate adsorption and accelerated carrier transfer by long-wave photothermal effect,and reduced activation barrier by short-wave photoelectronic effect,due to the broadened full-spectrum absorbability of catalyst.This work has brought us into the innovative technology of full-spectrum synergistic photothermo-catalysis,which is envisioned to expand the application fields of high-efficient solar fuel production.展开更多
Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by...Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix.展开更多
The fast and accurate reduced-order modeling of fluidized beds is a challenging task in the field of fluid dynamics,owing to their high dimensionality and nonlinear dynamic behavior.In this study,a nonintrusive reduce...The fast and accurate reduced-order modeling of fluidized beds is a challenging task in the field of fluid dynamics,owing to their high dimensionality and nonlinear dynamic behavior.In this study,a nonintrusive reduced order modeling method,the reduced order model based on principal component analysis and bidirectional long short-term memory networks(PBLSTM ROM),was developed to capture complex spatio-temporal dynamics of fluidized beds.By combining principal component analysis and Bidirectional long-short-term memory networks,the PBLSTM ROM effectively extracted dynamic evolution information without any prior knowledge of governing equations,enabling reduced-order modeling of unsteady flow fields.The PBLSTM ROM was validated using the solid volume fraction and gas velocity flow fields of a fluidized bed with immersed tubes,showing superior performance over both the PLSTM and PANN ROMs in accurately capturing temporal changes in the fluidization fields,especially in the region near immersed tubes where severe fluctuations appear.Moreover,the PBLSTM ROM improved the simulation speed by five orders of magnitude compared to traditional computational fluid dynamics simulations.These findings suggest that the PBLSTM ROM presents a promising approach for analyzing the complex fluid flows in engineering practice.展开更多
Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas,in which oxygen transfer is achieved by a redox material.Although lots of efforts have been made to develop high-per...Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas,in which oxygen transfer is achieved by a redox material.Although lots of efforts have been made to develop high-performance redox materials,a few studies have focused on the redox kinetics.In this work,the kinetics of SrFeO_(3−δ)–CaO∙MnO nanocomposite reduction by methane was investigated both on a thermo-gravimetric analyzer and in a packed-bed microreactor.During the methane reduction,combustion occurs before the partial oxidation and there exists a transition between them.The weight loss due to combustion increases,but the transition region becomes less inconspicuous as the reduction temperature increased.The weight loss associated with the partial oxidation is much larger than that with combustion.The rate of weight loss related to the partial oxidation is well fitted by the Avrami–Erofeyev equation with n=3(A3 model)with an activation energy of 59.8 kJ∙mol^(‒1).The rate law for the partial oxidation includes a solid conversion term whose expression is given by the A3 model and a methane pressure-dependent term represented by a power law.The partial oxidation is half order with respect to methane pressure.The proposed rate law could well predict the reduction kinetics;thus,it may be used to design and/or analyze a chemical looping reforming reactor.展开更多
文摘Constructing binary heterojunctions is an important strategy to improve the photocatalytic performance of graphitic carbon nitride(g‐C3N4).In this paper,a novel g‐C3N4 nanosheet‐based composite was constructed via in situ growth of bismuth oxyiodide(BiOI)nanoplates on the surface of g‐C3N4 nanosheets.The crystal phase,microstructure,optical absorption and textural properties of the synthesized photocatalysts were analyzed by X‐ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),ultraviolet‐visible(UV‐vis)diffuse reflectance spectroscopy(DRS),and nitrogen adsorption‐desorption isotherm measurements.The BiOI/g‐C3N4 nanosheet composite showed high activity and recyclability for the photodegradation of the target pollutant rhodamine B(RhB).The conversion of RhB(20 mg L?1)by the photocatalyst was nearly 100%after 50 min under visible‐light irradiation.The high photoactivity of the BiOI/g‐C3N4 nanosheet composite can be attributed to the enhanced visible‐light absorption of the g‐C3N4 nanosheets sensitized by BiOI nanoplates as well as the high charge separation efficiency obtained by the establishment of an internal electric field between the n‐type g‐C3N4 and p‐type BiOI.Based on the characterization and experimental results,a double‐transfer mechanism of the photoinduced electrons in the BiOI/g‐C3N4 nanosheet composite was proposed to explain its activity.This work represents a new strategy to understand and realize the design and synthesis of g‐C3N4 nanosheet‐based heterojunctions that display highly efficient charge separation and transfer.
基金financially supported by the National Natural Science Foundation of China(52176202)the Foshan Xianhu-Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(41200101)。
文摘Synergy between the intrinsic photon and thermal effects from full-spectrum sunlight for H_(2) production is considered to be central to further improve solar-driven H_(2) production.To that end,the photo-thermocatalyst that demonstrates both photoelectronic and photothermal conversion capabilities have drawn much attention recently.Here,we propose a novel synergistic full-spectrum photo-thermo-catalysis technique for high-efficient H_(2) production by solar-driven methanol steam reforming(MSR),along with the Pt-Cu Oxphoto-thermo-catalyst featuring Pt-Cu/Cu_(2)O/CuO heterojunctions by Pt-mediated in-situ photoreduction of Cu O.The results show that the H_(2) production performance rises superlinearly with increasing light intensity.The optimal H_(2) production rate of 1.6 mol g^(-1) h^(-1) with the corresponding solar-to-hydrogen conversion efficiency of 7%and the CO selectivity of 5%is achieved under 15×sun full-spectrum irradiance(1×sun=1 k W m^(-2))at 180°C,which is much more efficient than the previously-reported Cu-based thermo-catalysts for MSR normally operating at 250~350°C.These attractive performances result from the optimized reaction kinetics in terms of intensified intermediate adsorption and accelerated carrier transfer by long-wave photothermal effect,and reduced activation barrier by short-wave photoelectronic effect,due to the broadened full-spectrum absorbability of catalyst.This work has brought us into the innovative technology of full-spectrum synergistic photothermo-catalysis,which is envisioned to expand the application fields of high-efficient solar fuel production.
基金supported by the National Natural Science Foundation of China(52072118,51772089)the Youth 1000 Talent Program of China+3 种基金the Research and Development Plan of Key Areas in Hunan Province(2019GK2235)the Key Research and Development Program of Ningxia(2020BDE03007)the China Postdoctoral Science Foundation(2019M653649)the Guangdong Basic and Applied Basic Research Fund(2019A1515110518,2019A1515111188,2020B0909030004)。
文摘Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix.
基金supported by the National Key R&D Program of China(grant No.2021YFF0500400)Key Research Program of Shaanxi Province(grant No.2022GXLH-01-08)+2 种基金National Key R&D Program of China(grant No.2018YFB1501003)Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team(grant No.2022KXJ-179)Targeted Funding Program of Power Construction Corporation of China(grant No.DJ-PTZX-2021-03).
文摘The fast and accurate reduced-order modeling of fluidized beds is a challenging task in the field of fluid dynamics,owing to their high dimensionality and nonlinear dynamic behavior.In this study,a nonintrusive reduced order modeling method,the reduced order model based on principal component analysis and bidirectional long short-term memory networks(PBLSTM ROM),was developed to capture complex spatio-temporal dynamics of fluidized beds.By combining principal component analysis and Bidirectional long-short-term memory networks,the PBLSTM ROM effectively extracted dynamic evolution information without any prior knowledge of governing equations,enabling reduced-order modeling of unsteady flow fields.The PBLSTM ROM was validated using the solid volume fraction and gas velocity flow fields of a fluidized bed with immersed tubes,showing superior performance over both the PLSTM and PANN ROMs in accurately capturing temporal changes in the fluidization fields,especially in the region near immersed tubes where severe fluctuations appear.Moreover,the PBLSTM ROM improved the simulation speed by five orders of magnitude compared to traditional computational fluid dynamics simulations.These findings suggest that the PBLSTM ROM presents a promising approach for analyzing the complex fluid flows in engineering practice.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.21978230)Shaanxi Creative Talents Promotion Plan−Technological Innovation Team(Grant No.2019TD-039).
文摘Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas,in which oxygen transfer is achieved by a redox material.Although lots of efforts have been made to develop high-performance redox materials,a few studies have focused on the redox kinetics.In this work,the kinetics of SrFeO_(3−δ)–CaO∙MnO nanocomposite reduction by methane was investigated both on a thermo-gravimetric analyzer and in a packed-bed microreactor.During the methane reduction,combustion occurs before the partial oxidation and there exists a transition between them.The weight loss due to combustion increases,but the transition region becomes less inconspicuous as the reduction temperature increased.The weight loss associated with the partial oxidation is much larger than that with combustion.The rate of weight loss related to the partial oxidation is well fitted by the Avrami–Erofeyev equation with n=3(A3 model)with an activation energy of 59.8 kJ∙mol^(‒1).The rate law for the partial oxidation includes a solid conversion term whose expression is given by the A3 model and a methane pressure-dependent term represented by a power law.The partial oxidation is half order with respect to methane pressure.The proposed rate law could well predict the reduction kinetics;thus,it may be used to design and/or analyze a chemical looping reforming reactor.