Transparent conducting Al-doped zinc oxide (ZnO:AI) films with good adhesion have been deposited on polyimide thin film substrates by r.f. magnetron sputtering technique at low substrate temperature (25-180℃). The st...Transparent conducting Al-doped zinc oxide (ZnO:AI) films with good adhesion have been deposited on polyimide thin film substrates by r.f. magnetron sputtering technique at low substrate temperature (25-180℃). The structural, optical and electrical properties of the deposited films were investigated. High quality films with electrical resistivity as low as 8.5×10-4 Ω·cm and the average transmittance over 74% in the wavelength range of the visible spectrum have been obtained. The electron carrier concentrations are in the range from 2.9×1020 to 7.1×1020 cm-3 with mobilities from 4 to 8.8 cm2 V-1s-1. The densities of the films are in the range from 4.58 to 5.16 g/cm-3.展开更多
The global oceans play important roles in exciting the annual polar motion besides the atmosphere. However, it is still unclear about how large the regional oceans contribute to the annual polar motion. We investigate...The global oceans play important roles in exciting the annual polar motion besides the atmosphere. However, it is still unclear about how large the regional oceans contribute to the annual polar motion. We investigate systemically the contributions of the Pacific, Atlantic and Indian Oceans to the excitation of the annual polar motion, based on the output data of ocean current velocity field and ocean bottom pressure field from "Estimating the Circulation and Climate of the Ocean (ECCO)" ocean circulation model over the period 1993-2005. The result shows that due to its particular location and shape, the Atlantic Ocean makes a less significant contribution to the x-component of the annual polar motion excitation than the Pacific and Indian Oceans, while all these three oceans contribute to the y-component of the annual polar motion excitation to some extent.展开更多
Lithium–sulfur(Li–S)batteries promise high-energy-density potential to exceed the commercialized lithiumion batteries but suffer from limited cycling lifespan due to the side reactions between lithium polysulfides(L...Lithium–sulfur(Li–S)batteries promise high-energy-density potential to exceed the commercialized lithiumion batteries but suffer from limited cycling lifespan due to the side reactions between lithium polysulfides(LiPSs)and Li metal anodes.Herein,a three-way electrolyte with ternary solvents is proposed to enable high-energy-density and long-cycling Li–S pouch cells.Concretely,ternary solvents composed of 1,2-dimethoxyethane,di-isopropyl sulfide,and 1,3,5-trioxane are employed to guarantee smooth cathode kinetics,inhibit the parasitic reactions,and construct a robust solid electrolyte interphase,respectively.The cycling lifespan of Li–S coin cells with 50μm Li anodes and 4.0 mg cm^(−2) sulfur cathodes is prolonged from88 to 222 cycles using the three-way electrolyte.Nano-heterogeneous solvation structure of LiPSs and organic-rich solid electrolyte interphase are identified to improve the cycling stability of Li metal anodes.Consequently,a 3.0 Ah-level Li–S pouch cell with the three-way electrolyte realizes a high energy density of 405 Wh kg^(−1) and undergoes 27 cycles.Thiswork affords a three-way electrolyte recipe for suppressing the side reactions of LiPSs and inspires rational electrolyte design for practical high-energy-density and long-cycling Li–S batteries.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.60276044)the Ministry of Education of China Science and Technology Study Accented Term.
文摘Transparent conducting Al-doped zinc oxide (ZnO:AI) films with good adhesion have been deposited on polyimide thin film substrates by r.f. magnetron sputtering technique at low substrate temperature (25-180℃). The structural, optical and electrical properties of the deposited films were investigated. High quality films with electrical resistivity as low as 8.5×10-4 Ω·cm and the average transmittance over 74% in the wavelength range of the visible spectrum have been obtained. The electron carrier concentrations are in the range from 2.9×1020 to 7.1×1020 cm-3 with mobilities from 4 to 8.8 cm2 V-1s-1. The densities of the films are in the range from 4.58 to 5.16 g/cm-3.
基金Supported by the National Natural Science Foundation of China and Science and Technology Commission of Shanghai Municipality.
文摘The global oceans play important roles in exciting the annual polar motion besides the atmosphere. However, it is still unclear about how large the regional oceans contribute to the annual polar motion. We investigate systemically the contributions of the Pacific, Atlantic and Indian Oceans to the excitation of the annual polar motion, based on the output data of ocean current velocity field and ocean bottom pressure field from "Estimating the Circulation and Climate of the Ocean (ECCO)" ocean circulation model over the period 1993-2005. The result shows that due to its particular location and shape, the Atlantic Ocean makes a less significant contribution to the x-component of the annual polar motion excitation than the Pacific and Indian Oceans, while all these three oceans contribute to the y-component of the annual polar motion excitation to some extent.
基金Beijing Municipal Natural Science Foundation,Grant/Award Number:Z200011National Natural Science Foundation of China,Grant/Award Numbers:22061132002,22379013,T2322015+6 种基金Seed Fund of Shanxi Research Institute for Clean Energy,Grant/Award Number:SXKYJF015S&T Program of Hebei Province,Grant/Award Number:22344402DTsinghua-Jiangyin Innovation Special Fund(TJISF)Tsinghua-Toyota Joint Research FundInstitute of Strategic Research,Huawei Technologies Co.,Ltd.Ordos-Tsinghua Innovative&Collaborative Research Program in Carbon NeutralityNational Key Research and Development Program of China,Grant/Award Numbers:2021YFB2500300,2021YFB2400300。
文摘Lithium–sulfur(Li–S)batteries promise high-energy-density potential to exceed the commercialized lithiumion batteries but suffer from limited cycling lifespan due to the side reactions between lithium polysulfides(LiPSs)and Li metal anodes.Herein,a three-way electrolyte with ternary solvents is proposed to enable high-energy-density and long-cycling Li–S pouch cells.Concretely,ternary solvents composed of 1,2-dimethoxyethane,di-isopropyl sulfide,and 1,3,5-trioxane are employed to guarantee smooth cathode kinetics,inhibit the parasitic reactions,and construct a robust solid electrolyte interphase,respectively.The cycling lifespan of Li–S coin cells with 50μm Li anodes and 4.0 mg cm^(−2) sulfur cathodes is prolonged from88 to 222 cycles using the three-way electrolyte.Nano-heterogeneous solvation structure of LiPSs and organic-rich solid electrolyte interphase are identified to improve the cycling stability of Li metal anodes.Consequently,a 3.0 Ah-level Li–S pouch cell with the three-way electrolyte realizes a high energy density of 405 Wh kg^(−1) and undergoes 27 cycles.Thiswork affords a three-way electrolyte recipe for suppressing the side reactions of LiPSs and inspires rational electrolyte design for practical high-energy-density and long-cycling Li–S batteries.