期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Application of integrated geophysical techniques in geothermal exploration in Binhai County, Jiangsu Province
1
作者 Juncheng Wang Shiyin Gao +3 位作者 Jianguo Wang Lin Li Xiaoyan Gong jinbao su 《Deep Underground Science and Engineering》 2024年第3期338-348,共11页
Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization i... Integrated geophysical technology is a necessary and effective means for geothermal exploration.However,integration of geophysical technology for large‐scale surveys with those for geothermal reservoir localization is still in development.This study used the controlled source audio‐frequency magnetotelluric method technology for large‐scale exploration to obtain underground electrical structure information and micromotion detection technology to obtain underground wave velocity structure information.The combination of two detection technologies was used for local identification of geothermal reservoirs.Further,auxiliary correction and inversion constraint were implemented through the audio magnetotelluric sounding technology for maximum authenticity restoration of the near‐and transition‐field data.Through these technology improvements,a geothermal geological model was established for the Binhai County of Jiangsu Province in China and potential geothermal well locations were identified.On this basis,a geothermal well was drilled nearly 3000m deep,with a daily water volume of over 2000m3/day and a geothermal water temperature of 51°C at the well head.It is found that predictions using the above integrated geophysical exploration technology are in good agreement with the well geological formation data.This integrated geophysical technology can be effectively applied for geothermal exploration with high precision and reliability. 展开更多
关键词 controlled source audio frequency magnetotelluric method(CSAMT) geothermal exploration integrated geophysical technology micromotion detection technology
下载PDF
Sources, enrichment mechanisms, and resource effects of rare metal elements-enriched geothermal springs in Xizang, China
2
作者 Fei XUE Hongbing TAN +1 位作者 Xiying ZHANG jinbao su 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第11期3476-3499,共24页
Rare metals such as lithium(Li), rubidium(Rb), and cesium(Cs) are strategically crucial mineral resources for the development of emerging industries in China. Ensuring a stable long-term supply of these resources is e... Rare metals such as lithium(Li), rubidium(Rb), and cesium(Cs) are strategically crucial mineral resources for the development of emerging industries in China. Ensuring a stable long-term supply of these resources is essential. The geothermal systems in Xizang, China are well-developed, with a wide distribution of various types. Most high-temperature geothermal systems in Xizang are exceptionally enriched in rare metal elements(RMEs) and have the potential to become a new source of rare metals to secure China's strategic mineral resource supply in the future. A close relationship also exists between the geothermal system and the special salt lake resources on the Tibetan Plateau. Geothermal springs thus play a key role in the migration and enrichment of RMEs from deep to shallow parts of the crust, in the transition between endogenous and exogenous mineralization, and source-to-sink processes. However, the mechanisms of element enrichment and evolution in these springs have not been systematically discussed, and many theoretical issues remain to be investigated. Based on summarizing and analyzing previous research, this study employs hydrochemical and isotopic geochemistry methods to investigate typical geothermal springs across Xizang and explore the anomalous enrichment mechanism of RMEs, and the resource effects of geothermal springs. Comprehensive analysis shows that the total dissolved solids(TDS) and hydrochemical types of geothermal springs are similar to those of major geothermal fields worldwide, but the Tibetan springs are abnormally rich in Li(averaging5.48 mg/L), Rb(averaging 0.75 mg/L), and Cs(averaging 3.58 mg/L), which are hundreds to thousands of times more concentrated than natural waters. The distribution of these enriched geothermal springs is controlled by the Yarlung Zangbo suture zone and the extended N-S trending rifts, especially in the intersection zone of the two, where the geothermal springs are the most enriched. Based on the spatial distribution, isotopic, and elemental geochemistry, the RMEs enriched in Tibetan geothermal springs are mainly derived from the magmatic-hydrothermal fluids generated by the partial melting of the subducted Indian plate under the Eurasian continent. These fluids not only maintain geothermal activities as a heat source but also participate in the material cycle of the geothermal spring as a material source. Against the background of regional crustal enrichment in RMEs,incompatible elements such as Li, Rb, and Cs are gradually enriched in magmatic-hydrothermal processes including partial melting in the source, magmatic differentiation, and hydrothermal fluid exsolution, and some ore-forming elements are further extracted from surrounding rocks through deep high-temperature water-rock interactions. Eventually, an eruption occurs, and these fluids move to the surface to form a geothermal spring rich in RMEs. With the drainage of geothermal springs, the RMEs are continuously transported to the lake basin by surface runoff and continue to concentrate and evolve into salt lake brines under an extremely arid climate environment, constituting an endogenous source and exogenous accumulation salt lake metallogenic model. This comprehensive explanation of the sources, migration, enrichment mechanisms, and resource effects of geothermal springs will deepen the understanding of rare metal mineralization processes, and aid in the advancement of theoretical models for key rare metal mineral resources in various geological bodies of the Tibetan Plateau, significantly expanding exploration scopes and accurately assessing the resource potential of RMEs. 展开更多
关键词 Geothermal springs Rare metal elements Enrichment mechanisms Salt lakes Tibetan Plateau
原文传递
Detrital Zircon Geochronology of the Radial Sand Ridge System of Jiangsu Coast, East China: Implication for Sediment Provenance 被引量:8
3
作者 jinbao su Wenbo Rao +1 位作者 Yigang Wang Changping Mao 《Journal of Earth Science》 SCIE CAS CSCD 2018年第1期144-154,共11页
The radial sand ridge system (RSRS) located at Jiangsu coast of China attracts much attention on its origin and mechanic of formation for its special structure and potential land resource. Due to complicated hydrody... The radial sand ridge system (RSRS) located at Jiangsu coast of China attracts much attention on its origin and mechanic of formation for its special structure and potential land resource. Due to complicated hydrodynamic condition, the Jiangsu RSRS is a hot debated on its potential sources, Yangtze River or Yellow River? We collected ten sand samples from surface sediments along the west coast of Bohai Sea and Yellow Sea from the modern Yellow River estuary to Yangtze River estuary in summer, 2013. The samples are analyzed by method of detrital zircon age for source identification of the RSRS sediments. The U-Pb age spectra of detrital zircon grains of the samples show a wide range from Cenozoic to Late Archean with several age peaks. Comparing the age spectra between the Yangtze River and the Yellow River, the detrital zircons have younger age (〈100 Ma) group in the Yangtze River. These age distribution of the Jiangsu coastal RSRS sediments are similar to that of the Yangtze River, but different from the Yellow River. The samples located adjacent to the old Yellow River Delta show more wide-range age distribution, implying a compounded origination from the both rivers. Based on these findings it is proposed that, contrary to common opinion, the main sediment source of the Jiangsu RSRS is the Yangtze River, rather than the Yellow River. By implication, there should be evidence of hydrodynamic mechanics of oceanic currents and tidal motion. This aspect awaits confirmation in future research. 展开更多
关键词 Yellow Sea Jiangsu coast radial sand ridge zircon geochronology sediment provenance.
原文传递
Geochronology and Hf Isotopes of Granite Gravel from Fanjingshan, South China: Implication for the Precambrian Tectonic Evolution of Western Jiangnan Orogen 被引量:6
4
作者 jinbao su Yueqiao Zhang +3 位作者 Shuwen Dong Xuanhua Chen Yong Li Jianjun Cui 《Journal of Earth Science》 SCIE CAS CSCD 2014年第4期619-629,共11页
The debate of assembly time between the Yangtze and Cathaysia blocks has aroused the disputation on the formation mechanism of Jiangnan orogen, South China. Therefore widespread magmatism of 830-750 Ma in South China ... The debate of assembly time between the Yangtze and Cathaysia blocks has aroused the disputation on the formation mechanism of Jiangnan orogen, South China. Therefore widespread magmatism of 830-750 Ma in South China is interpreted as the product of either plume or arc magmatism, which results in distinctive depositional background in the Neoproterozoic. Granite gravel located at the unconformity between the Banxi Group and Fanjingshan Group of the western Jiangnan orogen was collected, which gave a new age limit to the deposition of the Banxi Group and Nanhu rift. Zircons from the granite gravel crystallized yield a weighted mean 2~6pb/238U age of 789~11 Ma, which probably represents the end of the Jiangnan orogeny and marks the onset of Nanhua rift. These zircons have negative εHf(t) of -2.1 to -6.0, with TDM of 1.38-1.52 Ga and Tcrust of 1.81-1.98 Ga indicating an old continental crust origin for the granite. 展开更多
关键词 Jiangnan orogeny Nanhua rift RODINIA Neoproterozoic.
原文传递
Syn-Faulting Calcite Ages:Constraint for the Late Mesozoic Deformation of the Ningzhen Mountain,Eastern China
5
作者 jinbao su Hongbing Tan +1 位作者 Yuexing Feng Guoxing Qin 《Journal of Earth Science》 SCIE CAS CSCD 2021年第6期1485-1495,共11页
It is difficult to date a brittle fault because of the absence of effective dating methods.Recently,calcite U-Pb dating has drawn the attention of many researchers and has been successfully applied to constrain the ag... It is difficult to date a brittle fault because of the absence of effective dating methods.Recently,calcite U-Pb dating has drawn the attention of many researchers and has been successfully applied to constrain the age of brittle deformation.The South China Block(SCB)has experienced multiphase deformations characterized by widespread brittle faults and folds,which has led to significant debate on the Mesozoic dynamic mechanism and deformational phases.A syn-faulting calcite vein that occurred in the Permian limestones of the Ningzhen Mountain region was analyzed using U-Pb dating and geochemistry techniques in this paper.The U-Pb dating results display multiphase activities with two mixed ages of 109.9±5.8 Ma(MSWD=46,n=231)and 117.2±2.4 Ma(MSWD=3.6,n=150).The age of 117.2±2.4 Ma likely represents the timing of the brittle faults.Trace elements and rare earth elements data indicate that these fault-related calcites are mainly derived from host limestones and unrelated to Cretaceous magmatic activity.These faults formed in a tectonic reactive period and dormant time of the adakitic magma in the Lower Yangtze region. 展开更多
关键词 U-Pb dating CALCITE South China Block brittle fault adakitic rock
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部