期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of minocycline on cerebral ischemia-reperfusion injury 被引量:4
1
作者 Yuanyin Zheng Lijuan Xu +4 位作者 jinbao yin Zhichao Zhong Hongling Fan Xi Li Quanzhong Chang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第10期900-908,共9页
Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture ... Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-repeffusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression. 展开更多
关键词 neural regeneration brain injury MINOCYCLINE cerebral ischemia-reperfusion HIPPOCAMPUS poly(adenosine diphosphate-ribose) polymerase-1 caspase-3 apoptosis grants-supported paper NEUROREGENERATION
下载PDF
Chloride channel blocker 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid inhibits nitric oxide-induced apoptosis in cultured rat hippocampal neurons 被引量:2
2
作者 jinbao yin Lijuan Xu +5 位作者 Shuling Zhang Yuanyin Zheng Zhichao Zhong Hongling Fan XiLi Quanzhong Chang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第2期121-126,共6页
Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic ... Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor. 展开更多
关键词 neural regeneration brain injury chloride channel 3-morpholinosydnonimine hippocampus poly(adenosine diphosphate-ribose)polymerase-1 apoptosis inducing factor neuronal apoptosis grants-supported paper photographs-containing paper neuroregeneration
下载PDF
Effects of calcium channel on 3-morpholinosydnonimine-induced rat hippocampal neuronal apoptosis 被引量:1
3
作者 Quanzhong Chang Shuling Zhang +3 位作者 Yuanyin Zheng Lijuan Xu jinbao yin Shining Cai 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第5期373-377,共5页
Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus. The present study investigated the effects of the broad-spect... Previous studies have demonstrated that increased chloride channel activity plays a role in nitric oxide-induced neuronal apoptosis in the rat hippocampus. The present study investigated the effects of the broad-spectrum calcium channel blocker CdCI2 on survival rate, percentage of apoptosis, and morphological changes in hippocampal neurons cultured in vitro, as well as the effects of calcium channels on neuronal apoptosis. The chloride channel blockers 4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulfonic acid (SITS) or 4, 4'-diisethiocyanostilbene-2, 2'-disulfonic acid (DIDS) increased the survival rate of 3-morpholinosydnonimine (SIN-1)-treated neurons and suppressed SIN-l-induced neuronal apoptosis. The calcium channel blocker CdCI2 did not increase the survival rate of neurons and did not affect SIN-l-induced apoptosis or SITS- or DIDS-suppressed neuronal apoptosis. Results demonstrated that calcium channels did not significantly affect neuronal apoptosis. 展开更多
关键词 calcium channel chloride channel 3-morpholinosydnonimine RATS HIPPOCAMPUS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部