Cardiovascular disease is the leading cause of global mortality,with anticoagulant therapy being the main prevention and treatment strategy.Recombinant hirudin(r-hirudin)is a direct thrombin inhibitor that can potenti...Cardiovascular disease is the leading cause of global mortality,with anticoagulant therapy being the main prevention and treatment strategy.Recombinant hirudin(r-hirudin)is a direct thrombin inhibitor that can potentially prevent thrombosis via subcutaneous(SC)and intravenous(IV)administration,but there is a risk of haemorrhage via SC and IV.Thus,microneedle(MN)provides painless and sanitary alternatives to syringes and oral administration.However,the current technological process for the micro mould is complicated and expensive.The micro mould obtained via three-dimensional(3D)printing is expected to save time and cost,as well as provide a diverse range of MNs.Therefore,we explored a method for MNs array model production based on 3D printing and translate it to micro mould that can be used for fabrication of dissolving MNs patch.The results show that r-hirudin-loaded and hyaluronic acid(HA)-based MNs can achieve transdermal drug delivery and exhibit significant potential in the prevention of thromboembolic disease without bleeding in animal models.These results indicate that based on 3D printing technology,MNs combined with r-hirudin are expected to achieve diverse customizableMNs and thus realize personalized transdermal anticoagulant delivery for minimally invasive and long-term treatment of thrombotic disease.展开更多
基金supported by the National Natural Science Foundation of China (NSFC 81902995)the project funded by China Postdoctoral Science Foundation (2018M641936)
文摘Cardiovascular disease is the leading cause of global mortality,with anticoagulant therapy being the main prevention and treatment strategy.Recombinant hirudin(r-hirudin)is a direct thrombin inhibitor that can potentially prevent thrombosis via subcutaneous(SC)and intravenous(IV)administration,but there is a risk of haemorrhage via SC and IV.Thus,microneedle(MN)provides painless and sanitary alternatives to syringes and oral administration.However,the current technological process for the micro mould is complicated and expensive.The micro mould obtained via three-dimensional(3D)printing is expected to save time and cost,as well as provide a diverse range of MNs.Therefore,we explored a method for MNs array model production based on 3D printing and translate it to micro mould that can be used for fabrication of dissolving MNs patch.The results show that r-hirudin-loaded and hyaluronic acid(HA)-based MNs can achieve transdermal drug delivery and exhibit significant potential in the prevention of thromboembolic disease without bleeding in animal models.These results indicate that based on 3D printing technology,MNs combined with r-hirudin are expected to achieve diverse customizableMNs and thus realize personalized transdermal anticoagulant delivery for minimally invasive and long-term treatment of thrombotic disease.