期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
On the Influences of Urbanization on the Extreme Rainfall over Zhengzhou on 20 July 2021: A Convection-Permitting Ensemble Modeling Study 被引量:7
1
作者 Yali LUO Jiahua ZHANG +5 位作者 Miao YU Xudong LIANG Rudi XIA Yanyu GAO Xiaoyu GAO jinfang yin 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期393-409,共17页
This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permit... This study investigates the influences of urban land cover on the extreme rainfall event over the Zhengzhou city in central China on 20 July 2021 using the Weather Research and Forecasting model at a convection-permitting scale[1-km resolution in the innermost domain(d3)].Two ensembles of simulation(CTRL,NURB),each consisting of 11 members with a multi-layer urban canopy model and various combinations of physics schemes,were conducted using different land cover scenarios:(i)the real urban land cover,(ii)all cities in d3 being replaced with natural land cover.The results suggest that CTRL reasonably reproduces the spatiotemporal evolution of rainstorms and the 24-h rainfall accumulation over the key region,although the maximum hourly rainfall is underestimated and displaced to the west or southwest by most members.The ensemble mean 24-h rainfall accumulation over the key region of heavy rainfall is reduced by 13%,and the maximum hourly rainfall simulated by each member is reduced by 15–70 mm in CTRL relative to NURB.The reduction in the simulated rainfall by urbanization is closely associated with numerous cities/towns to the south,southeast,and east of Zhengzhou.Their heating effects jointly lead to formation of anomalous upward motions in and above the planetary boundary layer(PBL),which exaggerates the PBL drying effect due to reduced evapotranspiration and also enhances the wind stilling effect due to increased surface friction in urban areas.As a result,the lateral inflows of moisture and high-θe(equivalent potential temperature)air from south and east to Zhengzhou are reduced. 展开更多
关键词 URBANIZATION extreme rainfall convection-permitting ensemble simulation land-atmosphere interaction boundary layer water vapor transport
下载PDF
Predecessor Rain Events in the Yangtze River Delta Region Associated with South China Sea and Northwest Pacific Ocean(SCS-WNPO)Tropical Cyclones 被引量:2
2
作者 Huiyan XU Xiaofan LI +1 位作者 jinfang yin Dengrong ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1021-1042,共22页
Predecessor rain events(PREs) in the Yangtze River Delta(YRD) region associated with the South China Sea and Northwest Pacific Ocean(SCS-WNPO) tropical cyclones(TCs) are investigated during the period from 2010 to 201... Predecessor rain events(PREs) in the Yangtze River Delta(YRD) region associated with the South China Sea and Northwest Pacific Ocean(SCS-WNPO) tropical cyclones(TCs) are investigated during the period from 2010 to 2019.Results indicate that approximately 10% of TCs making landfall in China produce PREs over the YRD region;however,they are seldom forecasted. PREs often occur over the YRD region when TCs begin to be active in the SCS-WNPO with westward paths, whilst the cold air is still existing or beginning to be present. PREs are more likely to peak in June and September. The distances between the PRE centers and the parent TC range from 900 to 1700 km. The median value of rain amounts and the median lifetime of PREs is approximately 200 mm and 24 h, respectively. Composite results suggest that PREs form in the equatorward jet-entrance region of the upper-level westerly jet(WJ), where a 925-hPa equivalent potential temperature ridge is located east of a 500-hPa trough. Deep moisture is transported from the TC vicinity to the remote PREs region. The ascent of this deep moist air in front of the 500-hPa trough and frontogenesis beneath the equatorward entrance region of the WJ is advantageous for the occurrence of PREs in the YRD region. The upper-level WJ may be affected by the subtropical high and westerly trough in the Northwest Pacific Ocean, and the occurrence of PREs may favor the maintenance of the upper-level WJ. The upper-level outflow of TCs in the SCS plays a secondary role. 展开更多
关键词 tropical cyclone heavy rain westerly trough upper-level jet stream
下载PDF
A Modified Double-Moment Bulk Microphysics Scheme Geared toward the East Asian Monsoon Region 被引量:1
3
作者 jinfang yin Donghai WANG +3 位作者 Guoqing ZHAI Hong WANG Huanbin XU Chongjian LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1451-1471,共21页
Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)schem... Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)scheme in the Weather Research and Forecasting(WRF)model for the East Asian monsoon region(EAMR).In the IMY scheme,the shape parameters of raindrops,snow particles,and cloud droplet size distributions are variables instead of fixed constants.Specifically,the shape parameters of raindrop and snow size distributions are diagnosed from their respective shape-slope relationships.The shape parameter for the cloud droplet size distribution depends on the total cloud droplet number concentration.In addition,a series of minor improvements involving detailed cloud processes have also been incorporated.The improved scheme was coupled into the WRF model and tested on two heavy rainfall cases over the EAMR.The IMY scheme is shown to reproduce the overall spatial distribution of rainfall and its temporal evolution,evidenced by comparing the modeled results with surface gauge observations.The simulations also successfully capture the cloud features by using satellite and ground-based radar observations as a reference.The IMY has yielded simulation results on the case studies that were comparable,and in ways superior to MY,indicating that the improved scheme shows promise.Although the simulations demonstrated a positive performance evaluation for the IMY scheme,continued experiments are required to further validate the scheme with different weather events. 展开更多
关键词 cloud and precipitation cloud microphysical processes double-moment microphysics scheme East Asia monsoon region(EAMR)
下载PDF
Precipitation Evolution from Plain to Mountains during the July 2023 Extreme Heavy Rainfall Event in North China
4
作者 Mingxin LI Jisong SUN +5 位作者 Feng LI Chong WU Rudi XIA Xinghua BAO jinfang yin Xudong LIANG 《Journal of Meteorological Research》 SCIE CSCD 2024年第4期635-651,共17页
North China experienced devastating rainfall from 29 July to 1 August 2023,which caused substantial flooding and damage.This study analyzed observations from surface rain gauges and S-band dual-polarization radars to ... North China experienced devastating rainfall from 29 July to 1 August 2023,which caused substantial flooding and damage.This study analyzed observations from surface rain gauges and S-band dual-polarization radars to reveal the following unique features of the precipitation evolution from the plain to the mountains during this event.(1) The total rainfall was found concentrated along the Taihang Mountains at elevations generally > 200 m,and its spatiotemporal evolution was closely associated with northward-moving low-level jets.(2) Storms propagated northwestward with southeasterly steering winds,producing continuous rainfall along the eastern slopes of the Taihang Mountains owing to mountain blocking,which resulted in the formation of local centers of precipitation maxima.However,most rainfall episodes with an extreme hourly rainfall rate(HRR),corresponding to large horizontal wind shear at low levels,actively occurred in the plain area to the east of the Taihang Mountains.(3) The western portion of the extreme heavy rain belt in the north was mainly caused by long-lasting cumulus–stratus mixed precipitation with HRR< 20 mm h~(-1);the eastern portion was dominated by short-duration convective precipitation with HRR > 20 mm h~(-1).The contributions of convective precipitation and cumulus–stratus mixed precipitation to the total rainfall of the southern and middle rain belts were broadly equivalent.(4) The local HRR maxima located at the transition zone from the plain to the mountains were induced by moderate storm-scale convective cells with active warm-rain processes and large number of small-sized rain droplets.(5) During the devastating rainfall event,it was observed that the rainfall peaked at around 1800 local time(LT) every day over the upstream plain area(no diurnal cycle of rainfall was observed in relation to the accumulated rainfall centers over mountain areas).This was attributable to convective activities along the storm propagation path,which was a result of the more unstable stratification with a suitable steering mechanism that was related to afternoon solar heating and enhanced water vapor.The findings of this study improve our understanding and knowledge of the extreme precipitation that can develop from the plain to the mountains in North China. 展开更多
关键词 extreme rainfall from plain to mountains convective precipitation stratiform precipitation hourly rainfall rate low-level jet diurnal variation
原文传递
A 10-yr Rainfall and Cloud-to-Ground Lightning Climatology over Coastal and Inland Regions of Guangdong,China during the Pre-Summer Rainy Season
5
作者 Yuqing RUAN Rudi XIA +3 位作者 Xinghua BAO Dong ZHENG Yan SHEN jinfang yin 《Journal of Meteorological Research》 SCIE CSCD 2024年第3期469-488,共20页
A comparative analysis of the spatiotemporal distribution characteristics of rainfall and lightning in coastal and inland areas of Guangdong Province of China during the pre-summer rainy season(PSRS)from 2008 to 2017 ... A comparative analysis of the spatiotemporal distribution characteristics of rainfall and lightning in coastal and inland areas of Guangdong Province of China during the pre-summer rainy season(PSRS)from 2008 to 2017 reveals distinct patterns.In the inland target region(ITR),rainfall is concentrated in the central and eastern mountainous areas.It exhibits a bimodal diurnal variation,with peaks in the afternoon and morning.The afternoon peak becomes more pronounced during the post-monsoon-onset period because of the increased rainfall frequency.Similarly,in the coastal target region(CTR),rainfall concentrates around mountainous peripheries.However,CTR’s rainfall is weaker than ITR’s during the pre-monsoon-onset period,primarily associated with the lower-level moisture outflow in CTR,but it strengthens significantly during the post-monsoon-onset period owing to enhanced moisture inflow.CTR’s diurnal rainfall variation transitions from bimodal to a single broad peak during the post-monsoon-onset period,influenced by changes in both rainfall frequency and intensity.In contrast to rainfall,the spatiotemporal distribution of lightning centers remains relatively stable during the PSRS.The strongest center is located over ITR’s plains west of the rainfall center,with a secondary center in the western plains of CTR.Lightning activity significantly increases during the post-monsoon-onset period,particularly in ITR,primarily because of the increased lightning hours.The diurnal lightning flash density and lightning hours show a single afternoon peak in the two target regions,and the timing of the peak in ITR is approximately two hours later than in CTR.Composite circulation analysis indicates that during early morning,the lower atmosphere is nearly neutral in stratification.The advected warm,moist,unstable airflow,combined with topography,favors convection initiation.In the afternoon,solar radiation increases thermal instability,further enhancing the convection frequency and intensity.Improved moisture and thermal conditions contribute to an increase in rainfall and lightning during the post-monsoon-onset period.Moreover,the occurrence of lightning is found to be closely linked to the most unstable convective available potential energy,low-level vertical wind shear,and updraft intensity. 展开更多
关键词 RAINFALL lightning spatiotemporal distribution diurnal variation pre-summer rainy season
原文传递
A Possible Dynamic Mechanism for Rapid Production of the Extreme Hourly Rainfall in Zhengzhou City on 20 July 2021 被引量:29
6
作者 jinfang yin Haodong GU +5 位作者 Xudong LIANG Miao YU Jisong SUN Yanxin XIE Feng LI Chong WU 《Journal of Meteorological Research》 SCIE CSCD 2022年第1期6-25,共20页
In this study,the unprecedented extreme rainfall event during 19-20 July 2021,which caused devastating flooding in Zhengzhou City and its nearby areas,is examined based on observational data analysis and WRF model 40-... In this study,the unprecedented extreme rainfall event during 19-20 July 2021,which caused devastating flooding in Zhengzhou City and its nearby areas,is examined based on observational data analysis and WRF model 40-h simulations on 1-km horizontal resolution.The results show that the model successfully reproduces(i)major synopticscale weather systems(i.e.,the western Pacific subtropical high,the Tibetan high,two typhoons,and the Huang-Huai cyclone),(ii)convective initiation along the east to north edge of the Songshan Mountain,where orographic lifting is obvious,and(iii)subsequent formation of the convective storm producing the extreme rainfall in Zhengzhou.In particular,the model generates the maximum rainfall rate of 233 mm h^(-1)and 40-h accumulated rainfall of 704 mm,corresponding well to the observed extreme values of 201.9 mm h^(-1)and 818 mm,at nearly observed timing and location.Importantly,the model reproduces an intense quasi-stationary,well-organized meso-γ-scale convective system,surrounded by an arc-shaped convergence zone,allowing the development of convective updrafts in a three-quarter circle around the convective system,in a way similar to“multidirectional pumping,”attracting all associated precipitation overlaid and concentrated into the same trailing region to generate the extreme hourly rainfall over Zhengzhou.Our study emphasizes the significant contribution of the unique dynamic structure of the well-organized meso-γ-scale convective system to the record-high hourly rainfall.A possible dynamic mechanism for short-time extreme rainfall production is proposed.That is,the arc-shaped convergence zone of the mesoscale convective system,acting like multidirectional lifting pumps,transports precipitation from different directions into the same region,and thus produces the extreme rainfall.The results gained herein may shed new light on better understanding and forecasting of short-time extreme rainfall. 展开更多
关键词 extreme rainfall meso-γ-scale convective system extreme hourly rainfall rate devastating flooding
原文传递
Investigation into the Formation, Structure, and Evolution of an EF4 Tornado in East China Using a High-Resolution Numerical Simulation 被引量:11
7
作者 Dan YAO Haile XUE +3 位作者 jinfang yin Jisong SUN Xudong LIANG Jianping GUO 《Journal of Meteorological Research》 SCIE CSCD 2018年第2期157-171,共15页
Devastating tornadoes in China have received growing attention in recent years, but little is known about their formation, structure, and evolution on the tornadic scale. Most of these tornadoes develop within the Eas... Devastating tornadoes in China have received growing attention in recent years, but little is known about their formation, structure, and evolution on the tornadic scale. Most of these tornadoes develop within the East Asian monsoon regime, in an environment quite different from tornadoes in the U.S. In this study, we used an idealized, highresolution(25-m grid spacing) numerical simulation to investigate the deadly EF4(Enhanced Fujita scale category 4)tornado that occurred on 23 June 2016 and claimed 99 lives in Yancheng, Jiangsu Province. A tornadic supercell developed in the simulation that had striking similarities to radar observations. The violent tornado in Funing County was reproduced, exceeding EF4(74 ms–1), consistent with the on-site damage survey. It was accompanied by a funnel cloud that extended to the surface, and exhibited a double-helix vorticity structure. The signal of tornado genesis was found first at the cloud base in the pressure perturbation field, and then developed both upward and downward in terms of maximum vertical velocity overlapping with the intense vertical vorticity centers. The tornado's demise was found to accompany strong downdrafts overlapping with the intense vorticity centers. One of the interesting findings of this work is that a violent surface vortex was able to be generated and maintained, even though the simulation employed a free-slip lower boundary condition. The success of this simulation, despite using an idealized numerical approach, provides a means to investigate more historical tornadoes in China. 展开更多
关键词 TORNADO Cloud Model version 1(CM1) vertical vorticity updraft helicity double-helix structure hazardous wind
原文传递
Effects of Microphysical Latent Heating on the Rapid Intensification of Typhoon Hato(2017) 被引量:4
8
作者 Dajun ZHAO Yubin YU +1 位作者 jinfang yin Hongxiong XU 《Journal of Meteorological Research》 SCIE CSCD 2020年第2期368-386,共19页
A 72-h cloud-resolving numerical simulation of Typhoon Hato(2017)is performed by using the Weather Research and Forecasting(WRF)model with the Advanced Research WRF(ARW)core(V3.8.1)on a horizontal resolution of2 km.To... A 72-h cloud-resolving numerical simulation of Typhoon Hato(2017)is performed by using the Weather Research and Forecasting(WRF)model with the Advanced Research WRF(ARW)core(V3.8.1)on a horizontal resolution of2 km.To enhance the background tropical cyclone structure and intensity,a vortex dynamic initialization scheme with a terrain-filtering algorithm is utilized.The model reproduces reasonably well the track,structure,and intensity change of Typhoon Hato.More specifically,the change trend of simulated maximum wind speed is consistent with that of best-track analysis,and the simulated maximum wind of 49 ms^-1 is close to that(52 ms^-1)of the best-track analysis,indicating that the model has successfully captured the rapid intensification(RI)of Typhoon Hato(2017).Analyses of the model outputs reveal that the total microphysical latent heating of the inner-core region associated with enhanced vertical upward motion reaches its maximum at 9-km height in the upper troposphere during the RI stage.The dominant microphysical processes with positive latent heat contributions(i.e.,heating effect)are water vapor condensation into cloud water(67.6%),depositional growth of ice(12.9%),and generation(nucleation)of ice from vapor(7.9%).Those with negative latent heat contributions(cooling effect)are evaporation of rain(47.6%),melting of snow(27.7%),and melting of graupel(9.8%).Sensitivity experiments further show that the intensification speed and peak intensity of this typhoon are highly correlated to the dominant heating effect.A significant increase in graupel over 5-10-km height and snow at 10-14-km height in the inner-core region of Typhoon Hato corresponds well with its RI stage,and the latent heating from nucleation and depositional growth is crucial to the RI of simulated Hato. 展开更多
关键词 microphysical LATENT HEATING RAPID INTENSIFICATION TYPHOON BUDGET analysis
原文传递
Key Issues in Developing Numerical Models for Artificial Weather Modification 被引量:3
9
作者 Huanbin XU jinfang yin 《Journal of Meteorological Research》 SCIE CSCD 2017年第6期1007-1017,共11页
The scientific foundation of artificial weather modification is rneso- and small-scale dynamics and cloud-precipitation microphysics. Artificial weather modification requires the realistic coupling of weather patterns... The scientific foundation of artificial weather modification is rneso- and small-scale dynamics and cloud-precipitation microphysics. Artificial weather modification requires the realistic coupling of weather patterns, dynamical pro- cesses, and microphysical processes. Now that numerical models with weather dynamical characteristics have been widely applied to artificial weather modification, several key points that should not be neglected when developing numerical models for artificial weather modification are proposed in this paper, including the dynamical equations, model resolution, cloud-precipitation microphysical processes, numerical computation method, and initial and boundary conditions. Based on several examples, approaches are offered to deal with the problems that exist in these areas. 展开更多
关键词 artificial weather modification numerical model dynamical processes cloud-precipitation microphy- sical orocesses
原文传递
Using the Inverse of Expected Error Variance to Determine Weights of Individual Ensemble Members: Application to Temperature Prediction
10
作者 Xiaogong SUN jinfang yin Yan ZHAO 《Journal of Meteorological Research》 SCIE CSCD 2017年第3期502-513,共12页
The inverse of expected error variance is utilized to determine weights of individual ensemble members based on the THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ense... The inverse of expected error variance is utilized to determine weights of individual ensemble members based on the THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) forecast datasets. The weights of all ensemble members are thus calculated for summer 2012, with the NCEP final operational global analysis (FNL) data as the truth. Based on the weights of all ensemble members, the variable weighted ensemble mean (VWEM) of temperature of summer 2013 is derived and compared with that from the simple equally weighted ensemble mean. The results show that VWEM has lower root-mean-square error (RMSE) as well as absolute error, and has improved the temperature prediction accuracy. The improvements are quite notable over the Tibetan Plateau and its surrounding areas; specifically, a relative improvement rate of RMSE of more than 24% in 2-m temperature is demonstrated. Moreover, the improvement rates vary slightly with the pre- diction lead-time (24-96 h). It is suggested that the VWEM approach be employed in operational ensemble predic- tion to provide guidance for weather forecasting and climate prediction. 展开更多
关键词 ensemble forecast variable weighted ensemble mean simple equally weighted ensemble mean predic-tion accuracy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部