Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter.They break the fermion-boson dichotomy and obey non-Abelian braiding statistics:their interchanges yield unitary o...Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter.They break the fermion-boson dichotomy and obey non-Abelian braiding statistics:their interchanges yield unitary operations,rather than merely a phase factor,in a space spanned by topologically degenerate wavefunctions.They are the building blocks of topological quantum computing.However,experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto,in spite of various theoretical proposals.Here,we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice.By implementing the ground states of the toric-code model with twists through quantum circuits,we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons,i.e.,the Ising anyons.In particular,we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type,and can be explored to encode topological logical qubits.Furthermore,we demonstrate how to implement both single-and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits.Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons,offering a new lens into the study of such peculiar quasiparticles.展开更多
The present study established rat models of middle cerebral artery ischemia/reperfusion using the thread method. Rats performed willed-movement (climbing a ladder or wall in a box) when induced by food and water. Re...The present study established rat models of middle cerebral artery ischemia/reperfusion using the thread method. Rats performed willed-movement (climbing a ladder or wall in a box) when induced by food and water. Results revealed that Longa scores of neurological deficits significantly decreased in the willed-movement group at 15 days after reperfusion, while expression of glial fibrillary acidic protein, neurotrophic factor-3, and growth-associated protein-43 significantly increased at 7 and 15 days after reperfusion. Results suggested that willed-movement ameliorated neurological deficits by increasing expression of glial fibriliary acidic protein, neurotrophic factor-3, and growth-associated protein-43.展开更多
Composite Thin-walled Lenticular Tube(CTLT)is increasingly utilized in small satellites missions as a lightweight,foldable,and rollable structural material that facilitates the construction of large deployable systems...Composite Thin-walled Lenticular Tube(CTLT)is increasingly utilized in small satellites missions as a lightweight,foldable,and rollable structural material that facilitates the construction of large deployable systems.The CTLT is initially flattened and coiled around a central hub for storage before launch,during which elastic energy is stored as deformation energy,allowing it to be self-deployed on demand for use in orbit.This work presents a comprehensive investigation into the coiling,storage and deployment behaviors of CTLT that wraps around a central hub.A nonlinear explicit dynamic finite element model was developed with both deformable CTLT and rigidbodies mechanisms including the central hub and guide rollers,as well as the complex interactions among them.The coiling mechanics characteristics such as stored strain energy and rotational moment were presented and validated against experimental data in the literature.Then,the dynamic deployment behaviors were analyzed in terms of two different deployment methods,namely,controlled deployment and free deployment.The effect of material property change during storage was also discussed through numerical experiments.展开更多
基金the National Natural Science Foundation of China(Grants Nos.92065204,12075128,T2225008,12174342,12274368,12274367,U20A2076,and 11725419)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300200)+2 种基金the Zhejiang Province Key Research and Development Program(Grant No.2020C01019)supported by Tsinghua Universitythe Shanghai Qi Zhi Institute。
文摘Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter.They break the fermion-boson dichotomy and obey non-Abelian braiding statistics:their interchanges yield unitary operations,rather than merely a phase factor,in a space spanned by topologically degenerate wavefunctions.They are the building blocks of topological quantum computing.However,experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto,in spite of various theoretical proposals.Here,we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice.By implementing the ground states of the toric-code model with twists through quantum circuits,we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons,i.e.,the Ising anyons.In particular,we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type,and can be explored to encode topological logical qubits.Furthermore,we demonstrate how to implement both single-and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits.Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons,offering a new lens into the study of such peculiar quasiparticles.
基金the Science and Technology Projects from Science and Technology Agency,Hunan Province,China,No. 2011FJ3206
文摘The present study established rat models of middle cerebral artery ischemia/reperfusion using the thread method. Rats performed willed-movement (climbing a ladder or wall in a box) when induced by food and water. Results revealed that Longa scores of neurological deficits significantly decreased in the willed-movement group at 15 days after reperfusion, while expression of glial fibrillary acidic protein, neurotrophic factor-3, and growth-associated protein-43 significantly increased at 7 and 15 days after reperfusion. Results suggested that willed-movement ameliorated neurological deficits by increasing expression of glial fibriliary acidic protein, neurotrophic factor-3, and growth-associated protein-43.
基金co-supported by the National Natural Science Foundation of China(No.12202295)the Fundamental Research Funds for the Central Universities,China(No.YJ2021137)+1 种基金the Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an Jiaotong University,China(No.SV2021-KF-04)the Open Project of State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology,China(No.GZ22120)。
文摘Composite Thin-walled Lenticular Tube(CTLT)is increasingly utilized in small satellites missions as a lightweight,foldable,and rollable structural material that facilitates the construction of large deployable systems.The CTLT is initially flattened and coiled around a central hub for storage before launch,during which elastic energy is stored as deformation energy,allowing it to be self-deployed on demand for use in orbit.This work presents a comprehensive investigation into the coiling,storage and deployment behaviors of CTLT that wraps around a central hub.A nonlinear explicit dynamic finite element model was developed with both deformable CTLT and rigidbodies mechanisms including the central hub and guide rollers,as well as the complex interactions among them.The coiling mechanics characteristics such as stored strain energy and rotational moment were presented and validated against experimental data in the literature.Then,the dynamic deployment behaviors were analyzed in terms of two different deployment methods,namely,controlled deployment and free deployment.The effect of material property change during storage was also discussed through numerical experiments.