AIM: To investigate the protective effect against two immune liver injury models in mice by 2-amino-2-[2-(4-octylphenyl) ethyl] propane-l,3-diol hydrochloride and its possible mechanisms in Con A-induced liver damage....AIM: To investigate the protective effect against two immune liver injury models in mice by 2-amino-2-[2-(4-octylphenyl) ethyl] propane-l,3-diol hydrochloride and its possible mechanisms in Con A-induced liver damage. METHODS: Liver tissue or hepatocyte injury was monitored biochemically by measuring alanine aminotransferase (sALT) and aspartate aminotransferase (sAST) activity. Hematoxylin & eosin (HE) staining was used for histopathological examination. To evaluate the role of IFN-γ and IL-4 in the liver injury, serum levels of IFN-γ and IL-4 were determined using commercially available ELISA kit at 12 h after Con A challenge. We also determined FTY 720-induced spleen cell apoptosis by flow cytometry analysis or spleen cell proliferation test. RESULTS: Different doses of FTY 720 treatment dramatically reduced circulating markers of hepatocyte injury in two kinds of immunological liver injury models. FTY 720 dramatically reduced the elevated serum IFN-γ and IL-4 levels after Con A injection. Effect of spleen cell supernatants treated with Con A or FTY 720 on hepatocytes showed that ALT activities in cultured hepatocyte supernatants in Con A treatment group increased markedly and FTY 720 could reduce this elevated ALT activities in FTY 720 treatment group. FTY 720 dose-dependently increased the percentage of apoptotic cells in T cells and inhibited splenocyte proliferation induced by Con A. CONCLUSION: Pretreatment with FTY 720 was shown to produce protective effect on the immune liver injury in mice. The possible mechanism of FTY 720 on Con A-induced liver damage is that it could inhibit lymphocyte proliferation and induce lymphocyte apoptosis, resulting in the reduction of IL-4 or IFN-γ release, and subsequently protecting liver from being damaged by Con A.展开更多
文摘AIM: To investigate the protective effect against two immune liver injury models in mice by 2-amino-2-[2-(4-octylphenyl) ethyl] propane-l,3-diol hydrochloride and its possible mechanisms in Con A-induced liver damage. METHODS: Liver tissue or hepatocyte injury was monitored biochemically by measuring alanine aminotransferase (sALT) and aspartate aminotransferase (sAST) activity. Hematoxylin & eosin (HE) staining was used for histopathological examination. To evaluate the role of IFN-γ and IL-4 in the liver injury, serum levels of IFN-γ and IL-4 were determined using commercially available ELISA kit at 12 h after Con A challenge. We also determined FTY 720-induced spleen cell apoptosis by flow cytometry analysis or spleen cell proliferation test. RESULTS: Different doses of FTY 720 treatment dramatically reduced circulating markers of hepatocyte injury in two kinds of immunological liver injury models. FTY 720 dramatically reduced the elevated serum IFN-γ and IL-4 levels after Con A injection. Effect of spleen cell supernatants treated with Con A or FTY 720 on hepatocytes showed that ALT activities in cultured hepatocyte supernatants in Con A treatment group increased markedly and FTY 720 could reduce this elevated ALT activities in FTY 720 treatment group. FTY 720 dose-dependently increased the percentage of apoptotic cells in T cells and inhibited splenocyte proliferation induced by Con A. CONCLUSION: Pretreatment with FTY 720 was shown to produce protective effect on the immune liver injury in mice. The possible mechanism of FTY 720 on Con A-induced liver damage is that it could inhibit lymphocyte proliferation and induce lymphocyte apoptosis, resulting in the reduction of IL-4 or IFN-γ release, and subsequently protecting liver from being damaged by Con A.