This paper describes the effect of the in situ hydrolysis of 2-cyanopyridine and its derivatives on the synthesis of dimethyl carbonate(DMC) from CO2 and methanol over CeO2.2-Cyanopyridine.with the highest electroni...This paper describes the effect of the in situ hydrolysis of 2-cyanopyridine and its derivatives on the synthesis of dimethyl carbonate(DMC) from CO2 and methanol over CeO2.2-Cyanopyridine.with the highest electronic charge number of the carbon in the cyanogroup,is the most effective agent to accelerate the desired reaction by a decrease of water.CeO2(110) planes are active for the hydrolysis of 2-cyanopyridine,further enhancing the DMC formation by in situ removal of water effectively.The DMC yield is improved drastically up to 378.5 mmol g cat^-1 from 12.8 mmol g cat^-1 with the in situ hydrolysis of 2-cyanopyridine over rod-CeO2(1 1 0) catalyst.展开更多
基金Financial support by Natural Science Foundation of China (NSFC,Nos.21176179,U1462122)the Program for New Century Excellent Talents in University(No.NCET-13-0411) is gratefully acknowledged
文摘This paper describes the effect of the in situ hydrolysis of 2-cyanopyridine and its derivatives on the synthesis of dimethyl carbonate(DMC) from CO2 and methanol over CeO2.2-Cyanopyridine.with the highest electronic charge number of the carbon in the cyanogroup,is the most effective agent to accelerate the desired reaction by a decrease of water.CeO2(110) planes are active for the hydrolysis of 2-cyanopyridine,further enhancing the DMC formation by in situ removal of water effectively.The DMC yield is improved drastically up to 378.5 mmol g cat^-1 from 12.8 mmol g cat^-1 with the in situ hydrolysis of 2-cyanopyridine over rod-CeO2(1 1 0) catalyst.