期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effective electrocatalytic hydrodechlorination of 2,4,6-trichlorophenol by a novel Pd/MnO_(2)/Ni foam cathode 被引量:3
1
作者 Zi-Meng Zhang Rui Cheng +8 位作者 Jun Nan Xue-Qi Chen Cong Huang Di Cao Cai-Hua Bai jing-long han Bin Liang Zhi-Ling Li Ai-Jie Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3823-3828,共6页
Pd modified electrodes possess problems such as easy agglomeration and low electrolytic ability,and the use of manganese dioxide(MnO_(2)) to facilitate Pd reduction of organic pollutants is just started.However,there ... Pd modified electrodes possess problems such as easy agglomeration and low electrolytic ability,and the use of manganese dioxide(MnO_(2)) to facilitate Pd reduction of organic pollutants is just started.However,there is still a limited understanding of how to match the Pd load and MnO_(2) to realize optimal dechlorination efficiency at minimum cost.Here,a Pd/MnO_(2)/Ni foam cathode was successfully fabricated and applied for the efficient electrochemical dechlorination of 2,4,6-trichlorophenol(2,4,6-TCP).The optimal electrocatalytic hydrodechlorination(ECH)performance with 2,4,6-TCP dechlorination efficiency(92.58%in 180 min)was obtained when the concentration of PdCl_(2) precipitation was 1 mmol/L,the deposition time of MnO_(2) was 300 s and cathode potential was-0.8 V.Performance influenced by the exogenous factors(e.g.,initial pH and coexisted ions)were further investigated.It was found that the neutral pH was the most favorable for ECH and a reduction in dechlorination efficiency(6%~47.6%)was observed in presence of 5 mmol/L of NO_(2)^(-),NO_(3)^(-),S^(2-)or SO_(3)^(2-).Cyclic voltammetry(CV)and quenching experiments verified the existence of three hydrogen species on Pd surface,including adsorbed atomic hydrogen(H^(*)_(ads)),absorbed atomic hydrogen(H^(*)_(abs)),and molecular hydrogen(H_(2)).And the introduction of MnO_(2)promoted the generation of atomic H^(*).Only adsorbed atomic hydrogen(H^(*)_(ads)) was confirmed that it truly facilitated the ECH process.Besides H^(*)_(ads) induced reduction,the direct reduction by cathode electrons also participated in the 2,4,6-TCP dechlorination process.Pd/MnO_(2)/Ni foam cathode shows excellent dechlorination performance,fine stability and recyclable potential,which provides strategies for the effective degradation of persistent halogenated organic pollutants in groundwater. 展开更多
关键词 Pd/MnO_(2)/Ni foam cathode 2 4 6-Trichlorophenol Electrocatalytic hydrodechlorination Dechlorination pathway Atomic H^(*)generation and utilization
原文传递
Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis 被引量:3
2
作者 Hong-Cheng Wang Hao-Yi Cheng +5 位作者 Shu-Sen Wang Dan Cui jing-long han Ya-Ping Hu Shi-Gang Su Ai-Jie Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第1期198-207,共10页
In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogeni... In this study, a novel scaled-up hybrid acidogenic bioreactor(HAB) was designed and adopted to evaluate the performance of azo dye(acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time(HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD(chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis(AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3% ± 2.5%, 86.2% ± 3.8% and 93.5% ± 1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS(61.1% ± 4.7%,75.4% ± 5.0% and 82.1% ± 2.1%, respectively). Moreover, larger TCV/TV(total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2% ± 3.7% and 28.30 ± 1.48 mA,respectively. They were significantly increased to 62.1% ± 2.0% and 34.55 ± 0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater. 展开更多
关键词 HAB(hybrid acidogenic bioreactor) Scale-up Azo dye Domestic wastewater Cyclic activated sludge system(CASS)
原文传递
Electrochemistry-stimulated environmental bioremediation:Development of applicable modular electrode and system scale-up 被引量:1
3
作者 Ai-Jie Wang Hong-Cheng Wang +5 位作者 Hao-Yi Cheng Bin Liang Wen-Zong Liu jing-long han Bo Zhang Shu-Sen Wang 《Environmental Science and Ecotechnology》 2020年第3期32-40,共9页
Bioelectrochemical systems(BESs)have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus.In stark contrast to the significa... Bioelectrochemical systems(BESs)have been studied extensively during the past decades owing primarily to their versatility and potential in addressing the water-energy-resource nexus.In stark contrast to the significant advancements that have been made in developing innovative processes for pollution control and bioresource/bioenergy recovery,minimal progress has been achieved in demonstrating the feasibility of BESs in scaled-up applications.This lack of scaled-up demonstration could be ascribed to the absence of suitable electrode modules(EMs)engineered for large-scale application.In this study,we report a scalable composite-engineered EM(total volume of 1 m^(3)),fabricated using graphite-coated stainless steel and carbon felt,that allows integrating BESs into mainstream wastewater treatment technologies.The cost-effectiveness and easy scalability of this EM provides a viable and clear path to facilitate the transition between the success of the lab studies and applications of BESs to solve multiple pressing environmental issues at full-scale. 展开更多
关键词 Environmental bioremediation Bio-electrochemical systems(BESs) Electrode modular SCALING-UP Intergradation system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部