Polyoxometalates(POMs)are classified as solid superacids which can exhibit notable proton conductivity,making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membr...Polyoxometalates(POMs)are classified as solid superacids which can exhibit notable proton conductivity,making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membranes(PEMs).In this study,a series of hybrid membranes were obtained by molecular-level hybridization of Weakley-type POM Na_(7)H_(2)LaW_(10)O_(36)(LaW_(10))clusters into sulfonated poly(aryl ether ketone sulfone)(SPAEKS).All hybrid membranes exhibited greater proton conductivity than the pristine membrane in the 30–80℃temperature range.When the doping amount of LaW 10 reached 7 wt.%,the proton conductivity of M-LaW 10^(-7)achieved 64 mS·cm^(−1)at 80℃.Lanthanide ions'high coordination number property and variable coordination environment can aid to attract more water molecules from the environment.LaW 10 and these bound water can construct denser hydrogen bonds with–SO_(3)H of SPAEKS.These intensive hydrogen bonds will facilitate the constitution of more continuous proton transport channels,and improve the proton conductivity of the hybrid membrane.This work off ers a fresh approach to using POMs containing rare-earth components in PEMs.展开更多
In the field of proton exchange membranes(PEMs),it is still a great challenge to explore new Nafion alternatives,maintaining the high proton conductivity and lowering the cost of practical application.In this work,a s...In the field of proton exchange membranes(PEMs),it is still a great challenge to explore new Nafion alternatives,maintaining the high proton conductivity and lowering the cost of practical application.In this work,a series of low sulfonated poly(aryl ether ketone sulfone)(SPAEKS)membranes hybridized by[Bi_(6)O_(5)(OH)_(3)]_(2)(NO_(3))10⋅6H_(2)O(H_(6)Bi_(12)O_(16))have been successfully fabricated.When the doping amount of H6Bi12O16 reaches 5 wt%,the DS15-Bi12-5 showing the best proton conductive ability and mechanical properties.The proton conductivity can achieve 72.8 mS⋅cm−1 at 80℃ and the tensile strength can reach 43.57 MPa.Confirmed by experimental data and activation energy(Ea)calculations,the existence of Bi cluster makes more hydrogen bonds,providing additional proton hopping sites and offers more proton transport vehicles,leading to a high proton conduction performance.This work proved that polyoxometalates(POMs)can replace the role of sulfonate groups in SPAEKS to a certain extent and work out the defects of high sulfonation,making a remarkable contribution to the practical application of low sulfonated SPAEKS.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22271022)the Natural Science Foundation of Jilin Province(No.YDZJ202201ZYTS342)supported by the China Scholarship Council(CSC No.201802335014).
文摘Polyoxometalates(POMs)are classified as solid superacids which can exhibit notable proton conductivity,making them a promising functional inorganic filler for enhancing the proton conductivity of proton exchange membranes(PEMs).In this study,a series of hybrid membranes were obtained by molecular-level hybridization of Weakley-type POM Na_(7)H_(2)LaW_(10)O_(36)(LaW_(10))clusters into sulfonated poly(aryl ether ketone sulfone)(SPAEKS).All hybrid membranes exhibited greater proton conductivity than the pristine membrane in the 30–80℃temperature range.When the doping amount of LaW 10 reached 7 wt.%,the proton conductivity of M-LaW 10^(-7)achieved 64 mS·cm^(−1)at 80℃.Lanthanide ions'high coordination number property and variable coordination environment can aid to attract more water molecules from the environment.LaW 10 and these bound water can construct denser hydrogen bonds with–SO_(3)H of SPAEKS.These intensive hydrogen bonds will facilitate the constitution of more continuous proton transport channels,and improve the proton conductivity of the hybrid membrane.This work off ers a fresh approach to using POMs containing rare-earth components in PEMs.
基金NationalNatural Science Foundation of China,Grant/Award Numbers:21701016,51803011Science and Technology Development Planning of Jilin Province,Grant/Award Number:20190103129JH+2 种基金Education Department of Jilin Province,Grant/Award Number:JJKH20200666KJChina Scholarship Council,Grant/Award Number:201802335014Welch Foundation,Grant/Award Number:B-0027。
文摘In the field of proton exchange membranes(PEMs),it is still a great challenge to explore new Nafion alternatives,maintaining the high proton conductivity and lowering the cost of practical application.In this work,a series of low sulfonated poly(aryl ether ketone sulfone)(SPAEKS)membranes hybridized by[Bi_(6)O_(5)(OH)_(3)]_(2)(NO_(3))10⋅6H_(2)O(H_(6)Bi_(12)O_(16))have been successfully fabricated.When the doping amount of H6Bi12O16 reaches 5 wt%,the DS15-Bi12-5 showing the best proton conductive ability and mechanical properties.The proton conductivity can achieve 72.8 mS⋅cm−1 at 80℃ and the tensile strength can reach 43.57 MPa.Confirmed by experimental data and activation energy(Ea)calculations,the existence of Bi cluster makes more hydrogen bonds,providing additional proton hopping sites and offers more proton transport vehicles,leading to a high proton conduction performance.This work proved that polyoxometalates(POMs)can replace the role of sulfonate groups in SPAEKS to a certain extent and work out the defects of high sulfonation,making a remarkable contribution to the practical application of low sulfonated SPAEKS.